
CS 450 – Numerical Analysis

Chapter 8: Numerical Integration
and Differentiation †

Prof. Michael T. Heath

Department of Computer Science
University of Illinois at Urbana-Champaign

heath@illinois.edu

January 28, 2019

†Lecture slides based on the textbook Scientific Computing: An Introductory
Survey by Michael T. Heath, copyright c© 2018 by the Society for Industrial and
Applied Mathematics. http://www.siam.org/books/cl80

http://www.siam.org/books/cl80

2

Numerical Integration

3

Integration
I For f : R→ R, definite integral over interval [a, b]

I (f) =

∫ b

a

f (x) dx

is defined by limit of Riemann sums

Rn =
n∑

i=1

(xi+1 − xi) f (ξi)

I Riemann integral exists provided integrand f is bounded and
continuous almost everywhere

I Absolute condition number of integration with respect to
perturbations in integrand is b − a

I Integration is inherently well-conditioned because of its smoothing
effect

4

Numerical Quadrature

I Quadrature rule is weighted sum of finite number of sample values
of integrand function

I To obtain desired level of accuracy at low cost,

I How should sample points be chosen?

I How should their contributions be weighted?

I Computational work is measured by number of evaluations of
integrand function required

5

Quadrature Rules

I An n-point quadrature rule has form

Qn(f) =
n∑

i=1

wi f (xi)

I Points xi are called nodes or abscissas

I Multipliers wi are called weights

I Quadrature rule is

I open if a < x1 and xn < b

I closed if x1 = a and xn = b

6

Quadrature Rules, continued

I Quadrature rules are based on polynomial interpolation

I Integrand function f is sampled at finite set of points

I Polynomial interpolating those points is determined

I Integral of interpolant is taken as estimate for integral of original
function

I In practice, interpolating polynomial is not determined explicitly but
used to determine weights corresponding to nodes

I If Lagrange is interpolation used, then weights are given by

wi =

∫ b

a

`i (x), i = 1, . . . , n

7

Method of Undetermined Coefficients

I Alternative derivation of quadrature rule uses method of
undetermined coefficients

I To derive n-point rule on interval [a, b], take nodes x1, . . . , xn as
given and consider weights w1, . . . ,wn as coefficients to be
determined

I Force quadrature rule to integrate first n polynomial basis functions
exactly, and by linearity, it will then integrate any polynomial of
degree n − 1 exactly

I Thus we obtain system of moment equations that determines
weights for quadrature rule

8

Example: Undetermined Coefficients

I Derive 3-point rule Q3(f) = w1f (x1) + w2f (x2) + w3f (x3) on
interval [a, b] using monomial basis

I Take x1 = a, x2 = (a + b)/2, and x3 = b as nodes

I First three monomials are 1, x , and x2

I Resulting system of moment equations is

w1 · 1 + w2 · 1 + w3 · 1 =

∫ b

a

1 dx = x |ba = b − a

w1 · a+ w2 · (a+ b)/2 + w3 · b =

∫ b

a

x dx = (x2/2)|ba = (b2 − a2)/2

w1 · a2 + w2 · ((a+ b)/2)2 + w3 · b2 =

∫ b

a

x2 dx = (x3/3)|ba = (b3 − a3)/3

9

Example, continued

I In matrix form, linear system is 1 1 1
a (a + b)/2 b
a2 ((a + b)/2)2 b2

w1

w2

w3

 =

 b − a
(b2 − a2)/2
(b3 − a3)/3



I Solving system by Gaussian elimination, we obtain weights

w1 =
b − a

6
, w2 =

2(b − a)

3
, w3 =

b − a

6

which is known as Simpson’s rule

10

Method of Undetermined Coefficients

I More generally, for any n and choice of nodes x1, . . . , xn,
Vandermonde system

1 1 · · · 1
x1 x2 · · · xn
...

...
. . .

...
xn−11 xn−12 · · · xn−1n



w1

w2

...
wn

 =


b − a

(b2 − a2)/2
...

(bn − an)/n


determines weights w1, . . . ,wn

11

Accuracy of Quadrature Rules

I Quadrature rule is of degree d if it is exact for every polynomial of
degree d , but not exact for some polynomial of degree d + 1

I By construction, n-point interpolatory quadrature rule is of degree at
least n − 1

I Rough error bound

|I (f)− Qn(f)| ≤ 1
4 h

n+1 ‖f (n)‖∞

where h = max{xi+1 − xi : i = 1, . . . , n − 1}, shows that
Qn(f)→ I (f) as n→∞, provided f (n) remains well behaved

I Higher accuracy can be obtained by increasing n or by decreasing h

12

Progressive Quadrature Rules

I Sequence of quadrature rules is progressive if nodes of Qn1 are
subset of nodes of Qn2 for n2 > n1

I For progressive rules, function evaluations used in one rule can be
reused in another, reducing overall cost

I To attain higher accuracy, we can increase number of points n or
subdivide interval into smaller subintervals

I In either case, efficiency is enhanced if successive rules are
progressive so that fewer new evaluations of integrand are required

13

Stability of Quadrature Rules

I Absolute condition number of quadrature rule is sum of magnitudes
of weights,

n∑
i=1

|wi |

I If weights are all nonnegative, then absolute condition number of
quadrature rule is b − a, same as that of underlying integral, so rule
is stable

I If any weights are negative, then absolute condition number can be
much larger, and rule can be unstable

14

Newton-Cotes Quadrature

15

Newton-Cotes Quadrature

Newton-Cotes quadrature rules use equally spaced nodes in interval [a, b]

I Midpoint rule

M(f) = (b − a) f

(
a + b

2

)

I Trapezoid rule

T (f) =
b − a

2
(f (a) + f (b))

I Simpson’s rule

S(f) =
b − a

6

(
f (a) + 4f

(
a + b

2

)
+ f (b)

)

16

Example: Newton-Cotes Quadrature
Approximate integral I (f) =

∫ 1

0
exp(−x2) dx ≈ 0.746824

M(f) = (1− 0) exp(−1/4) ≈ 0.778801

T (f) = (1/2)[exp(0) + exp(−1)] ≈ 0.683940

S(f) = (1/6)[exp(0) + 4 exp(−1/4) + exp(−1)] ≈ 0.747180

〈 interactive example 〉

17

Error Estimation

I Expanding integrand f in Taylor series about midpoint
m = (a + b)/2 of interval [a, b],

f (x) = f (m) + f ′(m)(x −m) +
f ′′(m)

2
(x −m)2

+
f ′′′(m)

6
(x −m)3 +

f (4)(m)

24
(x −m)4 + · · ·

I Integrating from a to b, odd-order terms drop out, yielding

I (f) = f (m)(b − a) +
f ′′(m)

24
(b − a)3 +

f (4)(m)

1920
(b − a)5 + · · ·

= M(f) + E (f) + F (f) + · · ·

where E (f) and F (f) represent first two terms in error expansion for
midpoint rule

18

Error Estimation, continued

I If we substitute x = a and x = b into Taylor series, add two series
together, observe once again that odd-order terms drop out, solve
for f (m), and substitute into midpoint rule, we obtain

I (f) = T (f)− 2E (f)− 4F (f)− · · ·

I Thus, provided length of interval is sufficiently small and f (4) is well
behaved, midpoint rule is about twice as accurate as trapezoid rule

I Halving length of interval decreases error in either rule by factor of
about 1/8

19

Error Estimation, continued

I Difference between midpoint and trapezoid rules provides estimate
for error in either of them

T (f)−M(f) = 3E (f) + 5F (f) + · · ·

so

E (f) ≈ T (f)−M(f)

3

I Weighted combination of midpoint and trapezoid rules eliminates
E (f) term from error expansion

I (f) =
2

3
M(f) +

1

3
T (f)− 2

3
F (f) + · · ·

= S(f)− 2

3
F (f) + · · ·

which gives alternate derivation for Simpson’s rule and estimate for
its error

20

Example: Error Estimation

I We illustrate error estimation by computing approximate value for

integral
∫ 1

0
x2 dx = 1/3

M(f) = (1− 0)(1/2)2 = 1/4

T (f) =
1− 0

2
(02 + 12) = 1/2

E (f) ≈ (T (f)−M(f))/3 = (1/4)/3 = 1/12

I Error in M(f) is about 1/12, error in T (f) is about −1/6

I Also,

S(f) = (2/3)M(f) + (1/3)T (f) = (2/3)(1/4) + (1/3)(1/2) = 1/3

which is exact for this integral, as expected

21

Accuracy of Newton-Cotes Quadrature

I Since n-point Newton-Cotes rule is based on polynomial interpolant
of degree n − 1, we expect rule to have degree n − 1

I Thus, we expect midpoint rule to have degree 0, trapezoid rule
degree 1, Simpson’s rule degree 2, etc.

I From Taylor series expansion, error for midpoint rule depends on
second and higher derivatives of integrand, which vanish for linear as
well as constant polynomials

I So midpoint rule integrates linear polynomials exactly, hence its
degree is 1 rather than 0

I Similarly, error for Simpson’s rule depends on fourth and higher
derivatives, which vanish for cubics as well as quadratic polynomials,
so Simpson’s rule is of degree 3

22

Accuracy of Newton-Cotes Quadrature

I In general, odd-order Newton-Cotes rule gains extra degree beyond
that of polynomial interpolant on which it is based

I n-point Newton-Cotes rule is of degree n − 1 if n is even, but of
degree n if n is odd

I This phenomenon is due to cancellation of positive and negative
errors

〈 interactive example 〉

23

Drawbacks of Newton-Cotes Rules

I Newton-Cotes quadrature rules are simple and often effective, but
they have drawbacks

I Using large number of equally spaced nodes may incur erratic
behavior associated with high-degree polynomial interpolation (e.g.,
weights may be negative)

I Indeed, every n-point Newton-Cotes rule with n ≥ 11 has at least
one negative weight, and

∑n
i=1 |wi | → ∞ as n→∞, so

Newton-Cotes rules become arbitrarily ill-conditioned

I Newton-Cotes rules are not of highest degree possible for number of
nodes used

24

Gaussian Quadrature

25

Clenshaw-Curtis Quadrature

I As with polynomial interpolation, use of Chebyshev points produces
better results

I Improved accuracy results from good approximation properties of
interpolation at Chebyshev points

I Weights are always positive and approximate integral always
converges to exact integral as n→∞

I Quadrature rules using Chebyshev points are known as
Clenshaw-Curtis quadrature, which can be implemented very
efficiently

I Clenshaw-Curtis quadrature has many attractive features, but still
does not have maximum possible degree for number of nodes used

26

Gaussian Quadrature

I Gaussian quadrature rules are based on polynomial interpolation,
but nodes as well as weights are chosen to maximize degree of
resulting rule

I With 2n parameters, we can attain degree of 2n − 1

I Gaussian quadrature rules can be derived by method of
undetermined coefficients, but resulting system of moment equations
that determines nodes and weights is nonlinear

I Also, nodes are usually irrational, even if endpoints of interval are
rational

I Although inconvenient for hand computation, nodes and weights are
tabulated in advance and stored in subroutine for use on computer

27

Example: Gaussian Quadrature Rule

I Derive two-point Gaussian rule on [−1, 1],

G2(f) = w1f (x1) + w2f (x2)

where nodes xi and weights wi are chosen to maximize degree of
resulting rule

I We use method of undetermined coefficients, but now nodes as well
as weights are unknown parameters to be determined

I Four parameters are to be determined, so we expect to be able to
integrate cubic polynomials exactly, since cubics depend on four
parameters

28

Example, continued

I Requiring rule to integrate first four monomials exactly gives
moment equations

w1 + w2 =

∫ 1

−1
1 dx = x |1−1 = 2

w1x1 + w2x2 =

∫ 1

−1
x dx = (x2/2)|1−1 = 0

w1x
2
1 + w2x

2
2 =

∫ 1

−1
x2 dx = (x3/3)|1−1 = 2/3

w1x
3
1 + w2x

3
2 =

∫ 1

−1
x3 dx = (x4/4)|1−1 = 0

29

Example, continued

I One solution of this system of four nonlinear equations in four
unknowns is given by

x1 = −1/
√

3, x2 = 1/
√

3, w1 = 1, w2 = 1

I Another solution reverses signs of x1 and x2

I Resulting two-point Gaussian rule has form

G2(f) = f (−1/
√

3) + f (1/
√

3)

and by construction it has degree three

I In general, for each n there is unique n-point Gaussian rule, and it is
of degree 2n − 1

I Gaussian quadrature rules can also be derived using orthogonal
polynomials

30

Change of Interval
I Gaussian rules are somewhat more difficult to apply than

Newton-Cotes rules because weights and nodes are usually derived
for some specific interval, such as [−1, 1]

I Given interval of integration [a, b] must be transformed into
standard interval for which nodes and weights have been tabulated

I To use quadrature rule tabulated on interval [α, β],∫ β

α

f (x) dx ≈
n∑

i=1

wi f (xi)

to approximate integral on interval [a, b],

I (g) =

∫ b

a

g(t) dt

we must change variable from x in [α, β] to t in [a, b]

31

Change of Interval, continued

I Many transformations are possible, but simple linear transformation

t =
(b − a)x + aβ − bα

β − α

has advantage of preserving degree of quadrature rule

32

Gaussian Quadrature

I Gaussian quadrature rules have maximal degree and optimal
accuracy for number of nodes used

I Weights are always positive and approximate integral always
converges to exact integral as n→∞

I Unfortunately, Gaussian rules of different orders have no nodes in
common (except possibly midpoint), so Gaussian rules are not
progressive

I Thus, estimating error using Gaussian rules of different order requires
evaluating integrand function at full set of nodes of both rules

33

Progressive Gaussian Quadrature

I Avoiding this additional work is motivation for Kronrod quadrature
rules

I Such rules come in pairs, n-point Gaussian rule Gn, and
(2n + 1)-point Kronrod rule K2n+1, whose nodes are optimally
chosen subject to constraint that all nodes of Gn are reused in K2n+1

I (2n + 1)-point Kronrod rule is of degree 3n + 1, whereas true
(2n + 1)-point Gaussian rule would be of degree 4n + 1

I In using Gauss-Kronrod pair, value of K2n+1 is taken as
approximation to integral, and error estimate is given by

(200|Gn − K2n+1|)1.5

34

Progressive Gaussian Quadrature, continued

I Because they efficiently provide high accuracy and reliable error
estimate, Gauss-Kronrod rules are among most effective methods for
numerical quadrature

I They form basis for many quadrature routines available in major
software libraries

I Pair (G7,K15) is commonly used standard

I Patterson quadrature rules further extend this idea by adding 2n + 2
optimally chosen nodes to 2n + 1 nodes of Kronrod rule K2n+1,
yielding progressive rule of degree 6n + 4

I Gauss-Radau and Gauss-Lobatto rules specify one or both endpoints,
respectively, as nodes and then choose remaining nodes and all
weights to maximize degree

35

Composite and Adaptive Quadrature

36

Composite Quadrature

I Alternative to using more nodes and higher degree rule is to
subdivide original interval into subintervals, then apply simple
quadrature rule in each subinterval

I Summing partial results then yields approximation to overall integral

I This approach is equivalent to using piecewise interpolation to derive
composite quadrature rule

I Composite rule is always stable if underlying simple rule is stable

I Approximate integral converges to exact integral as number of
subintervals goes to infinity provided underlying simple rule has
degree at least zero

37

Examples: Composite Quadrature

I Subdivide interval [a, b] into k subintervals of length h = (b − a)/k,
letting xj = a + jh, j = 0, . . . , k

I Composite midpoint rule

Mk(f) =
k∑

j=1

(xj − xj−1) f

(
xj−1 + xj

2

)
= h

k∑
j=1

f

(
xj−1 + xj

2

)
I Composite trapezoid rule

Tk(f) =
k∑

j=1

(xj − xj−1)

2
(f (xj−1) + f (xj))

= h (1
2
f (a) + f (x1) + · · ·+ f (xk−1) + 1

2
f (b))

38

Composite Quadrature Rules, continued

I Composite quadrature offers simple means of estimating error by
using two different levels of subdivision, which is easily made
progressive

I For example, halving interval length reduces error in midpoint or
trapezoid rule by factor of about 1/8

I Halving width of each subinterval means twice as many subintervals
are required, so overall reduction in error is by factor of about 1/4

I If h denotes subinterval length, then dominant term in error of
composite midpoint or trapezoid rules is O(h2)

I Dominant term in error of composite Simpson’s rule is O(h4), so
halving subinterval length reduces error by factor of about 1/16

39

Adaptive Quadrature

I Composite quadrature rule with error estimate suggests simple
automatic quadrature procedure

I Continue to subdivide all subintervals, say by half, until overall error
estimate falls below desired tolerance

I Such uniform subdivision is grossly inefficient for many integrands,
however

I More intelligent approach is adaptive quadrature, in which domain
of integration is selectively refined to reflect behavior of particular
integrand function

40

Adaptive Quadrature, continued

I Start with pair of quadrature rules whose difference gives error
estimate

I Apply both rules on initial interval [a, b]

I If difference between rules exceeds error tolerance, subdivide interval
and apply rules in each subinterval

I Continue subdividing subintervals, as necessary, until tolerance is
met on all subintervals

I Integrand is sampled densely in regions where it is difficult to
integrate and sparsely in regions where it is easy

〈 interactive example 〉

41

Adaptive Quadrature, continued

I Adaptive quadrature tends to be effective in practice, but it can be
fooled: both approximate integral and error estimate can be
completely wrong

I Integrand function is sampled at only finite number of points, so
significant features of integrand may be missed

I For example, interval of integration may be very wide but
“interesting” behavior of integrand may be confined to narrow range

I Sampling by automatic routine may miss interesting part of
integrand behavior, and resulting value for integral may be
completely wrong

42

Adaptive Quadrature, continued

I Adaptive quadrature routine may be inefficient in handling
discontinuities in integrand

I For example, adaptive routine may use many function evaluations
refining region around discontinuity of integrand

I To prevent this, call quadrature routine separately to compute
integral on either side of discontinuity, avoiding need to resolve
discontinuity

43

Special Integration Problems

44

Integrating Tabular Data

I If integrand is defined only by table of its values at discrete points,
then reasonable approach is to integrate piecewise interpolant

I For example, integrating piecewise linear interpolant to tabular data
gives composite trapezoid rule

I Excellent method for integrating tabular data is to use Hermite
cubic or cubic spline interpolation

I In effect, overall integral is computed by integrating each of cubic
pieces that make up interpolant

I This facility is provided by many spline interpolation packages

45

Improper Integrals

To compute integral over infinite or semi-infinite interval, several
approaches are possible

I Replace infinite limits of integration by carefully chosen finite values

I Transform variable of integration so that new interval is finite, but
care must be taken not to introduce singularities

I Use quadrature rule designed for infinite interval

46

Double Integrals

Approaches for evaluating double integrals include

I Use automatic one-dimensional quadrature routine for each
dimension, one for outer integral and another for inner integral

I Use product quadrature rule resulting from applying one-dimensional
rule to successive dimensions

I Use non-product quadrature rule for regions such as triangles

47

Multiple Integrals

I To evaluate multiple integrals in higher dimensions, only generally
viable approach is Monte Carlo method

I Function is sampled at n points distributed randomly in domain of
integration, and mean of function values is multiplied by area (or
volume, etc.) of domain to obtain estimate for integral

I Error in estimate goes to zero as 1/
√
n, so to gain one additional

decimal digit of accuracy requires increasing n by factor of 100

I For this reason, Monte Carlo calculations of integrals often require
millions of evaluations of integrand

〈 interactive example 〉

48

Multiple Integrals, continued

I Monte Carlo method is not competitive for dimensions one or two,
but strength of method is that its convergence rate is independent
of number of dimensions

I For example, one million points in six dimensions amounts to only
ten points per dimension, which is much better than any type of
conventional quadrature rule would require for same level of accuracy

〈 interactive example 〉

49

Integral Equations

I Typical integral equation has form∫ b

a

K (s, t)u(t) dt = f (s)

where kernel K and right-hand side f are known functions, and
unknown function u is to be determined

I Solve numerically by discretizing variables and replacing integral by
quadrature rule

n∑
j=1

wjK (si , tj)u(tj) = f (si), i = 1, . . . n

I This system of linear algebraic equations Ax = y , where
aij = wjK (si , tj), yi = f (si), and xj = u(tj), is solved for x to obtain
discrete sample of approximate values of u

50

Integral Equations, continued

I Though straightforward to solve formally, many integral equations
are extremely sensitive to perturbations in input data, which are
often subject to random experimental or measurement errors

I Resulting linear system is highly ill-conditioned

I Techniques for coping with ill-conditioning include

I Truncated SVD

I Regularization

I Constrained optimization

51

Numerical Differentiation

52

Numerical Differentiation

I Differentiation is inherently sensitive, as small perturbations in data
can cause large changes in result

I Differentiation is inverse of integration, which is inherently stable
because of its smoothing effect

I For example, two functions shown below have very similar definite
integrals but very different derivatives

53

Numerical Differentiation, continued

I To approximate derivative of function whose values are known only
at discrete set of points, good approach is to fit some smooth
function to given data and then differentiate approximating function

I If given data are sufficiently smooth, then interpolation may be
appropriate, but if data are noisy, then smoothing approximating
function, such as least squares spline, is more appropriate

〈 interactive example 〉

54

Finite Difference Approximations

I Given smooth function f : R→ R, we wish to approximate its first
and second derivatives at point x

I Consider Taylor series expansions

f (x + h) = f (x) + f ′(x)h +
f ′′(x)

2
h2 +

f ′′′(x)

6
h3 + · · ·

f (x − h) = f (x)− f ′(x)h +
f ′′(x)

2
h2 − f ′′′(x)

6
h3 + · · ·

I Solving for f ′(x) in first series, obtain forward difference
approximation

f ′(x) =
f (x + h)− f (x)

h
− f ′′(x)

2
h + · · · ≈ f (x + h)− f (x)

h

which is first-order accurate since dominant term in remainder of
series is O(h)

55

Finite Difference Approximations, continued

I Similarly, from second series derive backward difference
approximation

f ′(x) =
f (x)− f (x − h)

h
+

f ′′(x)

2
h + · · ·

≈ f (x)− f (x − h)

h

which is also first-order accurate

I Subtracting second series from first series gives centered difference
approximation

f ′(x) =
f (x + h)− f (x − h)

2h
− f ′′′(x)

6
h2 + · · ·

≈ f (x + h)− f (x − h)

2h

which is second-order accurate

56

Finite Difference Approximations, continued

I Adding both series together gives centered difference approximation
for second derivative

f ′′(x) =
f (x + h)− 2f (x) + f (x − h)

h2
− f (4)(x)

12
h2 + · · ·

≈ f (x + h)− 2f (x) + f (x − h)

h2

which is also second-order accurate

I Finite difference approximations can also be derived by polynomial
interpolation, which is less cumbersome than Taylor series for
higher-order accuracy or higher-order derivatives, and is more easily
generalized to unequally spaced points

〈 interactive example 〉

57

Automatic Differentiation

I Computer program expressing function is composed of basic
arithmetic operations and elementary functions, each of whose
derivatives is easily computed

I Derivatives can be propagated through program by repeated use of
chain rule, computing derivative of function step by step along with
function itself

I Result is true derivative of original function, subject only to rounding
error but suffering no discretization error

I Software packages are available implementing this automatic
differentiation (AD) approach

58

Richardson Extrapolation

59

Richardson Extrapolation

I In many problems, such as numerical integration or differentiation,
approximate value for some quantity is computed based on some
step size

I Ideally, we would like to obtain limiting value as step size approaches
zero, but we cannot take step size arbitrarily small because of
excessive cost or rounding error

I Based on values for nonzero step sizes, however, we may be able to
estimate value for step size of zero

I One way to do this is called Richardson extrapolation

60

Richardson Extrapolation, continued

I Let F (h) denote value obtained with step size h

I If we compute value of F for some nonzero step sizes, and if we
know theoretical behavior of F (h) as h→ 0, then we can extrapolate
from known values to obtain approximate value for F (0)

I Suppose that
F (h) = a0 + a1h

p +O(hr)

as h→ 0 for some p and r , with r > p

I Assume we know values of p and r , but not a0 or a1 (indeed,
F (0) = a0 is what we seek)

61

Richardson Extrapolation, continued

I Suppose we have computed F for two step sizes, say h and h/q for
some positive integer q

I Then we have

F (h) = a0 + a1h
p +O(hr)

F (h/q) = a0 + a1(h/q)p +O(hr) = a0 + a1q
−php +O(hr)

I This system of two linear equations in two unknowns a0 and a1 is
easily solved to obtain

a0 = F (h) +
F (h)− F (h/q)

q−p − 1
+O(hr)

I Accuracy of improved value, a0, is O(hr)

62

Richardson Extrapolation, continued

I Extrapolated value, though improved, is still only approximate, not
exact, and its accuracy is still limited by step size and arithmetic
precision used

I If F (h) is known for several values of h, then extrapolation process
can be repeated to produce still more accurate approximations, up
to limitations imposed by finite-precision arithmetic

63

Example: Richardson Extrapolation

I Use Richardson extrapolation to improve accuracy of finite difference
approximation to derivative of function sin(x) at x = 1

I Using first-order accurate forward difference approximation, we have

F (h) = a0 + a1h +O(h2)

so p = 1 and r = 2 in this instance

I Using step sizes of h = 0.5 and h/2 = 0.25 (i.e., q = 2), we obtain

F (h) =
sin(1.5)− sin(1)

0.5
= 0.312048

F (h/2) =
sin(1.25)− sin(1)

0.25
= 0.430055

64

Example, continued

I Extrapolated value is then given by

F (0) = a0 = F (h) +
F (h)− F (h/2)

(1/2)− 1
= 2F (h/2)− F (h) = 0.548061

I For comparison, correctly rounded result is cos(1) = 0.540302

〈 interactive example 〉

65

Example: Romberg Integration

I As another example, evaluate∫ π/2

0

sin(x) dx

I Using composite trapezoid rule, we have

F (h) = a0 + a1h
2 +O(h4)

so p = 2 and r = 4 in this instance

I With h = π/2, F (h) = F (π/2) = 0.785398

I With q = 2, F (h/2) = F (π/4) = 0.948059

66

Example, continued

Extrapolated value is then given by

F (0) = a0 = F (h) +
F (h)− F (h/2)

2−2 − 1
=

4F (h/2)− F (h)

3
= 1.002280

which is substantially more accurate than values previously computed
(exact answer is 1)

67

Romberg Integration

I Continued Richardson extrapolations using composite trapezoid rule
with successively halved step sizes is called Romberg integration

I It is capable of producing very high accuracy (up to limit imposed by
arithmetic precision) for very smooth integrands

I It is often implemented in automatic (though nonadaptive) fashion,
with extrapolations continuing until change in successive values falls
below specified error tolerance

〈 interactive example 〉

68

Summary – Numerical Integration

I Integral is approximated by weighted sum of sample values of
integrand function

I Nodes and weights chosen to achieve required accuracy at least cost
(fewest evaluations of integrand)

I Quadrature rules derived by integrating polynomial interpolant

I Newton-Cotes rules use equally spaced nodes and choose weights to
maximize polynomial degree (n − 1 or n)

I Gaussian rules choose both nodes and weights to maximize degree
(2n − 1)

I Progressive quadrature rules enable reuse of previous evaluations of
integrand

I Adaptive quadrature selectively refines domain to reflect behavior of
integrand, until convergence tolerance it met

69

Summary – Numerical Differentiation

I Differentiation is inherently sensitive to perturbations

I For discrete data, best approach is to fit some smooth function to
data and then differentiate approximating function

I If discrete data are noisy, smoothing approximation, such as least
squares, is most appropriatre

I For continuously defined smooth function, finite difference
approximations to derivatives can be derived by Taylor series or
polynomial interpolation

I Yet another option is automatic differentiation, in which computer
program expressing given function is differentiated step by step to
compute derivative of given function

70

Summary – Richardson Extrapolation

I For numerical approximation based on some step size h, accuracy
can be improved by fitting appropriate polynomial to computed
results for two values of h and then evaluating interpolant at h = 0

I Extrapolated value is still not exact, but it has higher order accuracy
than previous results it is based on

I Extrapolation can be repeated to achieve still higher accuracy (up to
limitations of rounding error), as in Romberg integration, for
example

	Numerical Integration
	Newton-Cotes Quadrature
	Gaussian Quadrature
	Composite and Adaptive Quadrature
	Special Integration Problems
	Numerical Differentiation
	Richardson Extrapolation

