
CS 450 – Numerical Analysis

Chapter 6: Optimization †

Prof. Michael T. Heath

Department of Computer Science
University of Illinois at Urbana-Champaign

heath@illinois.edu

January 28, 2019

†Lecture slides based on the textbook Scientific Computing: An Introductory
Survey by Michael T. Heath, copyright c© 2018 by the Society for Industrial and
Applied Mathematics. http://www.siam.org/books/cl80

http://www.siam.org/books/cl80

2

Optimization

3

Optimization

I Given function f : Rn → R, and set S ⊆ Rn, find x∗ ∈ S such that
f (x∗) ≤ f (x) for all x ∈ S

I x∗ is called minimizer or minimum of f

I It suffices to consider only minimization, since maximum of f is
minimum of −f

I Objective function f is usually differentiable, and may be linear or
nonlinear

I Constraint set S is defined by system of equations and inequalities,
which may be linear or nonlinear

I Points x ∈ S are called feasible points

I If S = Rn, problem is unconstrained

4

Optimization Problems

I General continuous optimization problem:

min f (x) subject to g(x) = 0 and h(x) ≤ 0

where f : Rn → R, g : Rn → Rm, h : Rn → Rp

I Linear programming : f , g , and h are all linear

I Nonlinear programming : at least one of f , g , and h is nonlinear

5

Examples: Optimization Problems

I Minimize weight of structure subject to constraint on its strength, or
maximize its strength subject to constraint on its weight

I Minimize cost of diet subject to nutritional constraints

I Minimize surface area of cylinder subject to constraint on its volume:

min
x1,x2

f (x1, x2) = 2πx1(x1 + x2)

subject to g(x1, x2) = πx21 x2 − V = 0

where x1 and x2 are radius and height of cylinder, and V is required
volume

6

Local vs Global Optimization

I x∗ ∈ S is global minimum if f (x∗) ≤ f (x) for all x ∈ S

I x∗ ∈ S is local minimum if f (x∗) ≤ f (x) for all feasible x in some
neighborhood of x∗

7

Global Optimization

I Finding, or even verifying, global minimum is difficult, in general

I Most optimization methods are designed to find local minimum,
which may or may not be global minimum

I If global minimum is desired, one can try several widely separated
starting points and see if all produce same result

I For some problems, such as linear programming, global optimization
is more tractable

8

Existence, Uniqueness, and Conditioning

9

Existence of Minimum

I If f is continuous on closed and bounded set S ⊆ Rn, then f has
global minimum on S

I If S is not closed or is unbounded, then f may have no local or
global minimum on S

I Continuous function f on unbounded set S ⊆ Rn is coercive if

lim
‖x‖→∞

f (x) = +∞

i.e., f (x) must be large whenever ‖x‖ is large

I If f is coercive on closed, unbounded set S ⊆ Rn, then f has global
minimum on S

10

Examples: Existence of Minimum

I f (x) = x2 has
I minimum on [−1, 1] because set is closed and bounded

I minimum on (−1, 1) by chance, even though set is not closed

I minimum on R because set is unbounded and f is coercive

I f (x) = x3 has
I minimum on [−1, 1] because set is closed and bounded

I no minimum on (−1, 1) because set is not closed

I no minimum on R because set is unbounded and f is not coercive

I Though bounded below by 0, f (x) = ex has no minimum on R
because it does not have arbitrarily large positive values for
arbitrarily large negative arguments, and thus is not coercive

11

Level Sets

I Level set for function f : S ⊆ Rn → R is set of all points in S for
which f has some given constant value

I For given γ ∈ R, sublevel set is

Lγ = {x ∈ S : f (x) ≤ γ}

I If continuous function f on S ⊆ Rn has nonempty sublevel set that
is closed and bounded, then f has global minimum on S

I If S is unbounded, then f is coercive on S if, and only if, all of its
sublevel sets are bounded

12

Convexity

I Set S ⊆ Rn is convex if it contains line segment between any two of
its points

I Function f : S ⊆ Rn → R is convex on convex set S if its graph
along any line segment in S lies on or below chord connecting
function values at endpoints of segment

13

Uniqueness of Minimum

I Any local minimum of convex function f on convex set S ⊆ Rn is
global minimum of f on S

I Any local minimum of strictly convex function f on convex set
S ⊆ Rn is unique global minimum of f on S

14

Sensitivity and Conditioning

I Function minimization and equation solving are closely related
problems, but their sensitivities differ

I In one dimension, absolute condition number of root x∗ of equation
f (x) = 0 is 1/|f ′(x∗)|, so if |f (x̂)| ≤ ε, then |x̂ − x∗| may be as large
as ε/|f ′(x∗)|

I For minimizing f , Taylor series expansion

f (x̂) = f (x∗ + h)

= f (x∗) + f ′(x∗)h + 1
2
f ′′(x∗)h2 +O(h3)

shows that, since f ′(x∗) = 0, if |f (x̂)− f (x∗)| ≤ ε, then |x̂ − x∗|
may be as large as

√
2ε/|f ′′(x∗)|

I Thus, based on function values alone, minima can be computed to
only about half precision

15

Optimality Conditions

16

First-Order Optimality Condition

I For function of one variable, we can find extremum by differentiating
function and setting derivative to zero

I Generalization to function of n variables is to find critical point, i.e.,
solution of nonlinear system

∇f (x) = 0

where ∇f (x) is gradient vector of f , whose ith component is
∂f (x)/∂xi

I For continuously differentiable f : S ⊆ Rn → R, any interior point x∗
of S at which f has local minimum must be critical point of f

I But not all critical points are minima: they can also be maxima or
saddle points

17

Second-Order Optimality Condition

I For twice continuously differentiable f : S ⊆ Rn → R, we can
distinguish among critical points by considering Hessian matrix
Hf (x) defined by

{Hf (x)}ij =
∂2f (x)

∂xi∂xj

which is symmetric

I At critical point x∗, if Hf (x∗) is

I positive definite, then x∗ is minimum of f

I negative definite, then x∗ is maximum of f

I indefinite, then x∗ is saddle point of f

I singular, then various pathological situations are possible

18

Constrained Optimality

I If problem is constrained, only feasible directions are relevant

I For equality-constrained problem

min f (x) subject to g(x) = 0

where f : Rn → R and g : Rn → Rm, with m ≤ n, necessary
condition for feasible point x∗ to be solution is that negative
gradient of f lie in space spanned by constraint normals

−∇f (x∗) = JT
g (x∗)λ

where Jg is Jacobian matrix of g , and λ is vector of Lagrange
multipliers

I This condition says we cannot reduce objective function without
violating constraints

19

Example: Constrained Optimality

min f (x) = 0.5x21 + 2.5x22 subject to g(x) = x1 − x2 − 1 = 0

20

Constrained Optimality, continued

I Lagrangian function L : Rn+m → R, is defined by

L(x ,λ) = f (x) + λTg(x)

I Its gradient is given by

∇L(x ,λ) =

[
∇f (x) + JT

g (x)λ
g(x)

]
I Its Hessian is given by

HL(x ,λ) =

[
B(x ,λ) JT

g (x)
Jg (x) O

]
where

B(x ,λ) = Hf (x) +
m∑
i=1

λiHgi (x)

21

Constrained Optimality, continued

I Together, necessary condition and feasibility imply critical point of
Lagrangian function

∇L(x ,λ) =

[
∇f (x) + JT

g (x)λ
g(x)

]
= 0

I Hessian of Lagrangian is symmetric, but not positive definite, so
critical point of L is saddle point rather than minimum or maximum

I Critical point (x∗,λ∗) of L is constrained minimum of f if
B(x∗,λ∗) is positive definite on null space of Jg (x∗)

I If columns of Z form basis for null space, then test projected
Hessian ZTBZ for positive definiteness

I If inequalities are present, then optimality (KKT) conditions also
require nonnegativity of Lagrange multipliers corresponding to
inequalities, and complementarity condition

22

One-Dimensional Optimization

23

Unimodality

I For minimizing function of one variable, we need “bracket” for
solution analogous to sign change for nonlinear equation

I Real-valued function f is unimodal on interval [a, b] if there is
unique x∗ ∈ [a, b] such that

I f (x∗) is minimum of f on [a, b]

I f is strictly decreasing for x ≤ x∗

I f is strictly increasing for x∗ ≤ x

I Unimodality enables discarding portions of interval based on sample
function values, analogous to interval bisection

24

Golden Section Search

I Suppose f is unimodal on [a, b], and let x1 and x2 be two points
within [a, b], with x1 < x2

I Evaluating and comparing f (x1) and f (x2), we can discard either
[a, x1) or (x2, b], with minimum known to lie in remaining
subinterval

I To repeat process, we need compute only one new function
evaluation

I To reduce length of interval by fixed fraction at each iteration, each
new pair of points must have same relationship with respect to new
interval that previous pair had with respect to previous interval

25

Golden Section Search, continued

I To accomplish this, we choose relative positions of two points as τ
and 1− τ , where τ 2 = 1− τ , so τ = (

√
5− 1)/2 ≈ 0.618 and

1− τ ≈ 0.382

I Whichever subinterval is retained, its length will be τ relative to
previous interval, and interior point retained will be at position either
τ or 1− τ relative to new interval

I To continue iteration, we need to compute only one new function
value, at complementary point

I This choice of sample points is called golden section search

I Golden section search is safe but convergence rate is only linear,
with constant C ≈ 0.618

26

Golden Section Search, continued
τ = (

√
5− 1)/2

x1 = a + (1− τ)(b − a); f1 = f (x1)
x2 = a + τ(b − a); f2 = f (x2)
while ((b − a) > tol) do

if (f1 > f2) then
a = x1
x1 = x2
f1 = f2
x2 = a + τ(b − a)
f2 = f (x2)

else
b = x2
x2 = x1
f2 = f1
x1 = a + (1− τ)(b − a)
f1 = f (x1)

end
end

27

Example: Golden Section Search

Use golden section search to minimize

f (x) = 0.5− x exp(−x2)

28

Example, continued

x1 f1 x2 f2
0.764 0.074 1.236 0.232
0.472 0.122 0.764 0.074
0.764 0.074 0.944 0.113
0.652 0.074 0.764 0.074
0.584 0.085 0.652 0.074
0.652 0.074 0.695 0.071
0.695 0.071 0.721 0.071
0.679 0.072 0.695 0.071
0.695 0.071 0.705 0.071
0.705 0.071 0.711 0.071

〈 interactive example 〉

29

Successive Parabolic Interpolation

I Fit quadratic polynomial to three function values

I Take minimum of quadratic to be new approximation to minimum of
function

I New point replaces oldest of three previous points and process is
repeated until convergence

I Convergence rate of successive parabolic interpolation is superlinear,
with r ≈ 1.324

30

Example: Successive Parabolic Interpolation

Use successive parabolic interpolation to minimize

f (x) = 0.5− x exp(−x2)

31

Example, continued

xk f (xk)
0.000 0.500
0.600 0.081
1.200 0.216
0.754 0.073
0.721 0.071
0.692 0.071
0.707 0.071

〈 interactive example 〉

32

Newton’s Method

I Another local quadratic approximation is truncated Taylor series

f (x + h) ≈ f (x) + f ′(x)h +
f ′′(x)

2
h2

I By differentiation, minimum of this quadratic function of h is given
by h = −f ′(x)/f ′′(x)

I Suggests iteration scheme

xk+1 = xk − f ′(xk)/f ′′(xk)

which is Newton’s method for solving nonlinear equation f ′(x) = 0

I Newton’s method for finding minimum normally has quadratic
convergence rate, but must be started close enough to solution to
converge

33

Example: Newton’s Method

I Use Newton’s method to minimize f (x) = 0.5− x exp(−x2)

I First and second derivatives of f are given by

f ′(x) = (2x2 − 1) exp(−x2), f ′′(x) = 2x(3− 2x2) exp(−x2)

I Newton iteration for zero of f ′ is given by

xk+1 = xk − (2x2k − 1)/(2xk(3− 2x2k))

I Using starting guess x0 = 1, we obtain

xk f (xk)
1.000 0.132
0.500 0.111
0.700 0.071
0.707 0.071

〈 interactive example 〉

34

Safeguarded Methods

I As with nonlinear equations in one dimension, slow-but-sure and
fast-but-risky optimization methods can be combined to provide
both safety and efficiency

I Most library routines for one-dimensional optimization are based on
this hybrid approach

I Popular combination is golden section search and successive
parabolic interpolation, for which no derivatives are required

35

Unconstrained Optimization

36

Direct Search Methods

I Direct search methods for multidimensional optimization make no
use of function values other than comparing them

I For minimizing function f of n variables, Nelder-Mead method
begins with n + 1 starting points, forming simplex in Rn

I Then move to new point along straight line from current point
having highest function value through centroid of other points

I New point replaces worst point, and process is repeated

I Direct search methods are useful for nonsmooth functions or for
small n, but expensive for larger n

〈 interactive example 〉

37

Steepest Descent Method

I Let f : Rn → R be real-valued function of n real variables

I At any point x where gradient vector is nonzero, negative gradient,
−∇f (x), points downhill toward lower values of f

I In fact, −∇f (x) is locally direction of steepest descent: f decreases
more rapidly along direction of negative gradient than along any
other

I Steepest descent method: starting from initial guess x0, successive
approximate solutions given by

xk+1 = xk − αk∇f (xk)

where αk is line search parameter that determines how far to go in
given direction

38

Steepest Descent, continued

I Given descent direction, such as negative gradient, determining
appropriate value for αk at each iteration is one-dimensional
minimization problem

min
αk

f (xk − αk∇f (xk))

that can be solved by methods already discussed

I Steepest descent method is very reliable: it can always make
progress provided gradient is nonzero

I But method is myopic in its view of function’s behavior, and
resulting iterates can zigzag back and forth, making very slow
progress toward solution

I In general, convergence rate of steepest descent is only linear, with
constant factor that can be arbitrarily close to 1

39

Example: Steepest Descent

I Use steepest descent method to minimize

f (x) = 0.5x21 + 2.5x22

I Gradient is given by ∇f (x) =

[
x1

5x2

]
I Taking x0 =

[
5
1

]
, we have ∇f (x0) =

[
5
5

]
I Perform line search along negative gradient direction

min
α0

f (x0 − α0∇f (x0))

I Exact minimum along line is given by α0 = 1/3, so next

approximation is x1 =

[
3.333
−0.667

]

40

Example, continued

xk f (xk) ∇f (xk)
5.000 1.000 15.000 5.000 5.000
3.333 −0.667 6.667 3.333 −3.333
2.222 0.444 2.963 2.222 2.222
1.481 −0.296 1.317 1.481 −1.481
0.988 0.198 0.585 0.988 0.988
0.658 −0.132 0.260 0.658 −0.658
0.439 0.088 0.116 0.439 0.439
0.293 −0.059 0.051 0.293 −0.293
0.195 0.039 0.023 0.195 0.195
0.130 −0.026 0.010 0.130 −0.130

41

Example, continued

〈 interactive example 〉

42

Newton’s Method

43

Newton’s Method

I Broader view can be obtained by local quadratic approximation,
which is equivalent to Newton’s method

I In multidimensional optimization, we seek zero of gradient, so
Newton iteration has form

xk+1 = xk −H−1f (xk)∇f (xk)

where Hf (x) is Hessian matrix of second partial derivatives of f

{Hf (x)}ij =
∂2f (x)

∂xi∂xj

44

Newton’s Method, continued

I Do not explicitly invert Hessian matrix, but instead solve linear
system

Hf (xk)sk = −∇f (xk)

for Newton step sk , then take as next iterate

xk+1 = xk + sk

I Convergence rate of Newton’s method for minimization is normally
quadratic

I As usual, Newton’s method is unreliable unless started close enough
to solution to converge

45

Example: Newton’s Method
I Use Newton’s method to minimize

f (x) = 0.5x21 + 2.5x22

I Gradient and Hessian are given by

∇f (x) =

[
x1

5x2

]
, Hf (x) =

[
1 0
0 5

]
I Taking x0 =

[
5
1

]
, we have ∇f (x0) =

[
5
5

]
I Linear system for Newton step is

[
1 0
0 5

]
s0 =

[
−5
−5

]
, so

x1 = x0 + s0 =

[
5
1

]
+

[
−5
−1

]
=

[
0
0

]
which is exact solution for this problem, as expected for quadratic
function

〈 interactive example 〉

46

Newton’s Method, continued

I In principle, line search parameter is unnecessary with Newton’s
method, since quadratic model determines length, as well as
direction, of step to next approximate solution

I When started far from solution, however, it may still be advisable to
perform line search along direction of Newton step sk to make
method more robust (damped Newton)

I Once iterates are near solution, then αk = 1 should suffice for
subsequent iterations

47

Newton’s Method, continued

I If objective function f has continuous second partial derivatives,
then Hessian matrix Hf is symmetric, and near minimum it is
positive definite

I Thus, linear system for step to next iterate can be solved in only
about half of work required for LU factorization

I Far from minimum, Hf (xk) may not be positive definite, so Newton
step sk may not be descent direction for function, i.e., we may not
have

∇f (xk)T sk < 0

I In this case, alternative descent direction can be computed, such as
negative gradient or direction of negative curvature, and then
perform line search

48

Trust Region Methods

I Alternative to line search is trust region method, in which
approximate solution is constrained to lie within region where
quadratic model is sufficiently accurate

I If current trust radius is binding, minimizing quadratic model
function subject to this constraint may modify direction as well as
length of Newton step

I Accuracy of quadratic model is assessed by comparing actual
decrease in objective function with that predicted by quadratic
model, and trust radius is increased or decreased accordingly

49

Trust Region Methods, continued

50

Quasi-Newton Methods

51

Quasi-Newton Methods

I Newton’s method costs O(n3) arithmetic and O(n2) scalar function
evaluations per iteration for dense problem

I Many variants of Newton’s method improve reliability and reduce
overhead

I Quasi-Newton methods have form

xk+1 = xk − αkB−1k ∇f (xk)

where αk is line search parameter and Bk is approximation to
Hessian matrix

I Many quasi-Newton methods are more robust than Newton’s
method, are superlinearly convergent, and have lower overhead per
iteration, which often more than offsets their slower convergence rate

52

Secant Updating Methods

I Could use Broyden’s method to seek zero of gradient, but this would
not preserve symmetry of Hessian matrix

I Several secant updating formulas have been developed for
minimization that not only preserve symmetry in approximate
Hessian matrix, but also preserve positive definiteness

I Symmetry reduces amount of work required by about half, while
positive definiteness guarantees that quasi-Newton step will be
descent direction

53

BFGS Method

One of most effective secant updating methods for minimization is BFGS

x0 = initial guess
B0 = initial Hessian approximation
for k = 0, 1, 2, . . .

Solve Bk sk = −∇f (xk) for sk
xk+1 = xk + sk
yk = ∇f (xk+1)−∇f (xk)
Bk+1 = Bk + (ykyT

k)/(yT
k sk) − (BksksTk Bk)/(sTk Bksk)

end

54

BFGS Method, continued

I In practice, factorization of Bk is updated rather than Bk itself, so
linear system for sk can be solved at cost of O(n2) rather than
O(n3) work

I Unlike Newton’s method for minimization, no second derivatives are
required

I Can start with B0 = I , so initial step is along negative gradient, and
then second derivative information is gradually built up in
approximate Hessian matrix over successive iterations

I BFGS normally has superlinear convergence rate, even though
approximate Hessian does not necessarily converge to true Hessian

I Line search can be used to enhance effectiveness

55

Example: BFGS Method

I Use BFGS to minimize f (x) = 0.5x21 + 2.5x22

I Gradient is given by ∇f (x) =

[
x1

5x2

]
I Taking x0 =

[
5 1

]T
and B0 = I , initial step is negative gradient, so

x1 = x0 + s0 =

[
5
1

]
+

[
−5
−5

]
=

[
0
−4

]
I Updating approximate Hessian using BFGS formula, we obtain

B1 =

[
0.667 0.333
0.333 0.667

]
I Then new step is computed and process is repeated

56

Example: BFGS Method

xk f (xk) ∇f (xk)
5.000 1.000 15.000 5.000 5.000
0.000 −4.000 40.000 0.000 −20.000
−2.222 0.444 2.963 −2.222 2.222

0.816 0.082 0.350 0.816 0.408
−0.009 −0.015 0.001 −0.009 −0.077
−0.001 0.001 0.000 −0.001 0.005

I Increase in function value can be avoided by using line search, which
generally enhances convergence

I For quadratic objective function, BFGS with exact line search finds
exact solution in at most n iterations, where n is dimension of
problem

〈 interactive example 〉

57

Conjugate Gradient Method

I Another method that does not require explicit second derivatives,
and does not even store approximation to Hessian matrix, is
conjugate gradient (CG) method

I CG generates sequence of conjugate search directions, implicitly
accumulating information about Hessian matrix

I For quadratic objective function, CG is theoretically exact after at
most n iterations, where n is dimension of problem

I CG is effective for general unconstrained minimization as well

58

Conjugate Gradient Method, continued

x0 = initial guess
g0 = ∇f (x0)
s0 = −g0

for k = 0, 1, 2, . . .
Choose αk to minimize f (xk + αksk)
xk+1 = xk + αksk
gk+1 = ∇f (xk+1)
βk+1 = (gT

k+1gk+1)/(gT
k gk)

sk+1 = −gk+1 + βk+1sk
end

I Alternative formula for βk+1:

βk+1 = ((gk+1 − gk)Tgk+1)/(gT
k gk)

59

Example: Conjugate Gradient Method

I Use CG method to minimize f (x) = 0.5x21 + 2.5x22

I Gradient is given by ∇f (x) =

[
x1

5x2

]
I Taking x0 =

[
5 1

]T
, initial search direction is negative gradient

s0 = −g0 = −∇f (x0) =

[
−5
−5

]
I Exact minimum along line is given by α0 = 1/3, so next

approximation is x1 =
[
3.333 −0.667

]T
, and we compute new

gradient,

g1 = ∇f (x1) =

[
3.333
−3.333

]

60

Example, continued

I So far there is no difference from steepest descent method

I At this point, however, rather than search along new negative
gradient, we compute instead

β1 = (gT
1 g1)/(gT

0 g0) = 0.444

which gives as next search direction

s1 = −g1 + β1s0 =

[
−3.333

3.333

]
+ 0.444

[
−5
−5

]
=

[
−5.556

1.111

]
I Minimum along this direction is given by α1 = 0.6, which gives

exact solution at origin, as expected for quadratic function

〈 interactive example 〉

61

Truncated Newton Methods

I Another way to reduce work in Newton-like methods is to solve
linear system for Newton step by iterative method

I Small number of iterations may suffice to produce step as useful as
true Newton step, especially far from overall solution, where true
Newton step may be unreliable anyway

I Good choice for linear iterative solver is CG method, which gives
step intermediate between steepest descent and Newton-like step

I Since only matrix-vector products are required, explicit formation of
Hessian matrix can be avoided by using finite difference of gradient
along given vector

62

Nonlinear Least Squares

63

Nonlinear Least Squares

I Given data (ti , yi), find vector x of parameters that gives “best fit”
in least squares sense to model function f (t, x), where f is nonlinear
function of x

I Define components of residual function

ri (x) = yi − f (ti , x), i = 1, . . . ,m

so we want to minimize φ(x) = 1
2
rT (x)r(x)

I Gradient vector is ∇φ(x) = JT (x)r(x) and Hessian matrix is

Hφ(x) = JT (x)J(x) +
m∑
i=1

ri (x)Hi (x)

where J(x) is Jacobian of r(x), and Hi (x) is Hessian of ri (x)

64

Nonlinear Least Squares, continued

I Linear system for Newton step is(
JT (xk)J(xk) +

m∑
i=1

ri (xk)Hi (xk)

)
sk = −JT (xk)r(xk)

I m Hessian matrices Hi are usually inconvenient and expensive to
compute

I Moreover, in Hφ each Hi is multiplied by residual component ri ,
which is small at solution if fit of model function to data is good

65

Gauss-Newton Method

I This motivates Gauss-Newton method for nonlinear least squares, in
which second-order term is dropped and linear system

JT (xk)J(xk)sk = −JT (xk)r(xk)

is solved for approximate Newton step sk at each iteration

I This is system of normal equations for linear least squares problem

J(xk)sk ∼= −r(xk)

which can be solved better by QR factorization

I Next approximate solution is then given by

xk+1 = xk + sk

and process is repeated until convergence

66

Example: Gauss-Newton Method

I Use Gauss-Newton method to fit nonlinear model function

f (t, x) = x1 exp(x2t)

to data
t 0.0 1.0 2.0 3.0
y 2.0 0.7 0.3 0.1

I For this model function, entries of Jacobian matrix of residual
function r are given by

{J(x)}i,1 =
∂ri (x)

∂x1
= − exp(x2ti)

{J(x)}i,2 =
∂ri (x)

∂x2
= −x1ti exp(x2ti)

67

Example, continued

I If we take x0 =
[
1 0

]T
, then Gauss-Newton step s0 is given by

linear least squares problem
−1 0
−1 −1
−1 −2
−1 −3

 s0 ∼=


−1
0.3
0.7
0.9


whose solution is s0 =

[
0.69
−0.61

]
I Then next approximate solution is given by x1 = x0 + s0, and

process is repeated until convergence

68

Example, continued

xk ‖r(xk)‖22
1.000 0.000 2.390
1.690 −0.610 0.212
1.975 −0.930 0.007
1.994 −1.004 0.002
1.995 −1.009 0.002
1.995 −1.010 0.002

〈 interactive example 〉

69

Gauss-Newton Method, continued

I Gauss-Newton method replaces nonlinear least squares problem by
sequence of linear least squares problems whose solutions converge
to solution of original nonlinear problem

I If residual at solution is large, then second-order term omitted from
Hessian is not negligible, and Gauss-Newton method may converge
slowly or fail to converge

I In such “large-residual” cases, it may be best to use general
nonlinear minimization method that takes into account true full
Hessian matrix

70

Levenberg-Marquardt Method
I Levenberg-Marquardt method is another useful alternative when

Gauss-Newton approximation is inadequate or yields rank deficient
linear least squares subproblem

I In this method, linear system at each iteration is of form

(JT (xk)J(xk) + µk I)sk = −JT (xk)r(xk)

where µk is scalar parameter chosen by some strategy

I Corresponding linear least squares problem is[
J(xk)√
µk I

]
sk ∼=

[
−r(xk)

0

]
I With suitable strategy for choosing µk , this method can be very

robust in practice, and it forms basis for several effective software
packages

〈 interactive example 〉

71

Constrained Optimization

72

Equality-Constrained Optimization

I For equality-constrained minimization problem

min f (x) subject to g(x) = 0

where f : Rn → R and g : Rn → Rm, with m ≤ n, we seek critical
point of Lagrangian L(x ,λ) = f (x) + λTg(x)

I Applying Newton’s method to nonlinear system

∇L(x ,λ) =

[
∇f (x) + JT

g (x)λ
g(x)

]
= 0

we obtain linear system[
B(x ,λ) JT

g (x)
Jg (x) O

] [
s
δ

]
= −

[
∇f (x) + JT

g (x)λ
g(x)

]
for Newton step (s, δ) in (x ,λ) at each iteration

73

Sequential Quadratic Programming

I Foregoing block 2× 2 linear system is equivalent to quadratic
programming problem, so this approach is known as sequential
quadratic programming

I Types of solution methods include

I Direct solution methods, in which entire block 2× 2 system is solved
directly

I Range space methods, based on block elimination in block 2× 2
linear system

I Null space methods, based on orthogonal factorization of matrix of
constraint normals, JT

g (x)

〈 interactive example 〉

74

Merit Function
I Once Newton step (s, δ) determined, we need merit function to

measure progress toward overall solution for use in line search or
trust region

I Popular choices include

I penalty function

φρ(x) = f (x) + 1
2
ρ g(x)Tg(x)

I augmented Lagrangian function

Lρ(x ,λ) = f (x) + λTg(x) + 1
2
ρ g(x)Tg(x)

where parameter ρ > 0 determines relative weighting of optimality
vs feasibility

I Given starting guess x0, good starting guess for λ0 can be obtained
from least squares problem

JT
g (x0)λ0

∼= −∇f (x0)

75

Inequality-Constrained Optimization

I Methods just outlined for equality constraints can be extended to
handle inequality constraints by using active set strategy

I Inequality constraints are provisionally divided into those that are
satisfied already (and can therefore be temporarily disregarded) and
those that are violated (and are therefore temporarily treated as
equality constraints)

I This division of constraints is revised as iterations proceed until
eventually correct constraints are identified that are binding at
solution

76

Penalty Methods

I Merit function can also be used to convert equality-constrained
problem into sequence of unconstrained problems

I If x∗ρ is solution to

min
x
φρ(x) = f (x) + 1

2
ρ g(x)Tg(x)

then under appropriate conditions

lim
ρ→∞

x∗ρ = x∗

I This enables use of unconstrained optimization methods, but
problem becomes ill-conditioned for large ρ, so we solve sequence of
problems with gradually increasing values of ρ, with minimum for
each problem used as starting point for next problem

〈 interactive example 〉

77

Barrier Methods
I For inequality-constrained problems, another alternative is barrier

function, such as

φµ(x) = f (x)− µ
p∑

i=1

1

hi (x)

or

φµ(x) = f (x)− µ
p∑

i=1

log(−hi (x))

which increasingly penalize feasible points as they approach
boundary of feasible region

I Again, solutions of unconstrained problem approach x∗ as µ→ 0,
but problems are increasingly ill-conditioned, so solve sequence of
problems with decreasing values of µ

I Barrier functions are basis for interior point methods for linear
programming

78

Example: Constrained Optimization

I Consider quadratic programming problem

min
x

f (x) = 0.5x21 + 2.5x22

subject to
g(x) = x1 − x2 − 1 = 0

I Lagrangian function is given by

L(x , λ) = f (x) + λ g(x) = 0.5x21 + 2.5x22 + λ(x1 − x2 − 1)

I Since

∇f (x) =

[
x1

5x2

]
and Jg (x) =

[
1 −1

]
we have

∇xL(x , λ) = ∇f (x) + JT
g (x)λ =

[
x1

5x2

]
+ λ

[
1
−1

]

79

Example, continued

I So system to be solved for critical point of Lagrangian is

x1 + λ = 0

5x2 − λ = 0

x1 − x2 = 1

which in this case is linear system1 0 1
0 5 −1
1 −1 0

x1x2
λ

 =

0
0
1


I Solving this system, we obtain solution

x1 = 0.833, x2 = −0.167, λ = −0.833

80

Example, continued

81

Linear Programming

I One of most important and common constrained optimization
problems is linear programming

I One standard form for such problems is

min f (x) = cTx subject to Ax = b and x ≥ 0

where m < n, A ∈ Rm×n, b ∈ Rm, and c , x ∈ Rn

I Feasible region is convex polyhedron in Rn, and minimum must
occur at one of its vertices

I Simplex method moves systematically from vertex to vertex until
minimum point is found

82

Linear Programming, continued

I Simplex method is reliable and normally efficient, able to solve
problems with thousands of variables, but can require time
exponential in size of problem in worst case

I Interior point methods for linear programming developed in recent
years have polynomial worst case solution time

I These methods move through interior of feasible region, not
restricting themselves to investigating only its vertices

I Although interior point methods have significant practical impact,
simplex method is still predominant method in standard packages for
linear programming, and its effectiveness in practice is excellent

83

Example: Linear Programming

I To illustrate linear programming, consider

min
x

= cTx = −8x1 − 11x2

subject to linear inequality constraints

5x1 + 4x2 ≤ 40, −x1 + 3x2 ≤ 12, x1 ≥ 0, x2 ≥ 0

I Minimum value must occur at vertex of feasible region, in this case
at x1 = 3.79, x2 = 5.26, where objective function has value −88.2

84

Example, continued

〈 interactive example 〉

85

Summary – Optimization

I Many algorithms for optimization are analogous to those for
nonlinear equations

I Examples in 1D include golden section search, successive parabolic
interpolation, and Newton’s method

I In n dimensions, unconstrained optimization seeks zero of gradient
of objective function, and equality constrained optimization seeks
zero of gradient of Lagrangian function

I Quasi-Newton methods (e.g., BFGS) significantly reduce overhead
of Newton’s method while still converging superlinearly

I Line search or trust region strategy can improve robustness of
Newton-like methods

86

Summary – Optimization, continued

I Special structure of nonlinear least squares problems can be
exploited to improve on generic unconstrained optimization
algorithms (Gauss-Newton, Levenberg-Marquardt)

I For constrained optimization, Newton’s method generalizes to
sequential quadratic programming (SQP) method

I Inequality constraints can be handled by active set strategy

I Highly effective, specialized algorithms are available for linear
programming (simplex method, interior point methods)

