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Systems of Linear Equations
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Review: Matrix-Vector Product

Ax =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n




x1
x2
...
xn



=


a1,1x1 + a1,2x2 + · · ·+ a1,nxn
a2,1x1 + a2,2x2 + · · ·+ a2,nxn

...
am,1x1 + am,2x2 + · · ·+ am,nxn



= x1


a1,1
a2,1

...
am,1

+ x2


a1,2
a2,2

...
am,2

+ · · ·+ xn


a1,n
a2,n

...
am,n


Definition: For A ∈ Rm×n, span(A) = {Ax : x ∈ Rn}
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System of Linear Equations

A x = b

I Given m × n matrix A and m-vector b, find unknown n-vector x
satisfying Ax = b

I System of equations asks whether b can be expressed as linear
combination of columns of A, or equivalently, is b ∈ span(A)?

I If so, coefficients of linear combination are components of solution
vector x

I Solution may or may not exist, and may or may not be unique

I For now, we consider only square case, m = n
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Singularity and Nonsingularity

n × n matrix A is nonsingular if it has any of following equivalent
properties

1. Inverse of A, denoted by A−1, exists such that AA−1 = A−1A = I

2. det(A) 6= 0

3. rank(A) = n

4. For any vector z 6= 0, Az 6= 0
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Existence and Uniqueness

I Existence and uniqueness of solution to Ax = b depend on whether
A is singular or nonsingular

I Can also depend on b, but only in singular case

I If b ∈ span(A), system is consistent

A b # solutions
nonsingular arbitrary 1

singular b ∈ span(A) ∞

singular b /∈ span(A) 0
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Geometric Interpretation

I In two dimensions, each equation determines straight line in plane

I Solution is intersection point of two straight lines, if any

I If two straight lines are not parallel (nonsingular), then their
intersection point is unique solution

I If two straight lines are parallel (singular), then they either do not
intersect (no solution) or else they coincide (any point along line is
solution)

I In higher dimensions, each equation determines hyperplane; if matrix
is nonsingular, intersection of hyperplanes is unique solution
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Example: Nonsingularity

I 2× 2 system

2x1 + 3x2 = b1

5x1 + 4x2 = b2

or in matrix-vector notation

Ax =

[
2 3
5 4

] [
x1
x2

]
=

[
b1
b2

]
= b

is nonsingular and thus has unique solution regardless of value of b

I For example, if b =
[
8 13

]T
, then x =

[
1 2

]T
is unique solution
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Example: Singularity

I 2× 2 system

Ax =

[
2 3
4 6

] [
x1
x2

]
=

[
b1
b2

]
= b

is singular regardless of value of b

I With b =
[
4 7

]T
, there is no solution

I With b =
[
4 8

]T
, x =

[
γ (4− 2γ)/3

]T
is solution for any real

number γ, so there are infinitely many solutions
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Norms and Condition Number
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Vector Norms

I Magnitude (absolute value, modulus) for scalars generalizes to norm
for vectors

I We will use only p-norms, defined by

‖x‖p =

(
n∑

i=1

|xi |p
)1/p

for integer p > 0 and n-vector x

I Important special cases

I 1-norm: ‖x‖1 =
∑n

i=1|xi |

I 2-norm: ‖x‖2 =
(∑n

i=1 |xi |
2
)1/2

I ∞-norm: ‖x‖∞ = maxi |xi |
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Example: Vector Norms
I Drawing shows unit “circle” in two dimensions for each norm

I Norms have following values for vector shown

‖x‖1 = 2.8, ‖x‖2 = 2.0, ‖x‖∞ = 1.6

〈 interactive example 〉
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Equivalence of Norms

I In general, for any vector x in Rn, ‖x‖1 ≥ ‖x‖2 ≥ ‖x‖∞

I However, we also have

I ‖x‖1 ≤
√
n · ‖x‖2

I ‖x‖2 ≤
√
n · ‖x‖∞

I ‖x‖1 ≤ n · ‖x‖∞

I For given n, norms differ by at most a constant, and hence are
equivalent: if one is small, all must be proportionally small

I Consequently, we can use whichever norm is most convenient in
given context
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Properties of Vector Norms

I For any vector norm

I ‖x‖ > 0 if x 6= 0

I ‖γx‖ = |γ| · ‖x‖ for any scalar γ

I ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

I In more general treatment, these properties taken as definition of
vector norm

I Useful variation on triangle inequality

I | ‖x‖ − ‖y‖ | ≤ ‖x − y‖
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Matrix Norms

I Matrix norm induced by a given vector norm is defined by

‖A‖ = maxx 6=0
‖Ax‖
‖x‖

I Norm of matrix measures maximum relative stretching matrix does
to any vector in given vector norm
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Example Matrix Norms

I Matrix norm induced by vector 1-norm is maximum absolute column
sum

‖A‖1 = max
j

n∑
i=1

|aij |

I Matrix norm induced by vector ∞-norm is maximum absolute row
sum

‖A‖∞ = max
i

n∑
j=1

|aij |

I Handy way to remember these is that matrix norms agree with
corresponding vector norms for n × 1 matrix

I No simple formula for matrix 2-norm
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Properties of Matrix Norms

I Any matrix norm satisfies

I ‖A‖ > 0 if A 6= 0

I ‖γA‖ = |γ| · ‖A‖ for any scalar γ

I ‖A + B‖ ≤ ‖A‖+ ‖B‖

I Matrix norms we have defined also satisfy

I ‖AB‖ ≤ ‖A‖ · ‖B‖

I ‖Ax‖ ≤ ‖A‖ · ‖x‖ for any vector x
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Condition Number

I Condition number of square nonsingular matrix A is defined by

cond(A) = ‖A‖ · ‖A−1‖

I By convention, cond(A) =∞ if A is singular

I Since

‖A‖ · ‖A−1‖ =

(
max
x 6=0

‖Ax‖
‖x‖

)
·
(

min
x 6=0

‖Ax‖
‖x‖

)−1
condition number measures ratio of maximum stretching to
maximum shrinking matrix does to any nonzero vectors

I Large cond(A) means A is nearly singular
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Properties of Condition Number

I For any matrix A, cond(A) ≥ 1

I For identity matrix I , cond(I ) = 1

I For any matrix A and scalar γ, cond(γA) = cond(A)

I For any diagonal matrix D = diag(di ), cond(D) =
max |di |
min |di |

〈 interactive example 〉
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Computing Condition Number

I Definition of condition number involves matrix inverse, so it is
nontrivial to compute

I Computing condition number from definition would require much
more work than computing solution whose accuracy is to be assessed

I In practice, condition number is estimated inexpensively as
byproduct of solution process

I Matrix norm ‖A‖ is easily computed as maximum absolute column
sum (or row sum, depending on norm used)

I Estimating ‖A−1‖ at low cost is more challenging
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Computing Condition Number, continued

I From properties of norms, if Az = y , then

‖z‖
‖y‖

≤ ‖A−1‖

and this bound is achieved for optimally chosen y

I Efficient condition estimators heuristically pick y with large ratio
‖z‖/‖y‖, yielding good estimate for ‖A−1‖

I Good software packages for linear systems provide efficient and
reliable condition estimator

I Condition number useful in assessing accuracy of approximate
solution
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Assessing Accuracy
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Error Bounds

I Condition number yields error bound for approximate solution to
linear system

I Let x be solution to Ax = b, and let x̂ be solution to Ax̂ = b + ∆b

I If ∆x = x̂ − x , then

b + ∆b = A(x̂) = A(x + ∆x) = Ax + A∆x

which leads to bound

‖∆x‖
‖x‖

≤ cond(A)
‖∆b‖
‖b‖

for possible relative change in solution x due to relative change in
right-hand side b

〈 interactive example 〉
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Error Bounds, continued

I Similar result holds for relative change in matrix: if (A + E )x̂ = b,
then

‖∆x‖
‖x̂‖

≤ cond(A)
‖E‖
‖A‖

I If input data are accurate to machine precision, then bound for
relative error in solution x becomes

‖x̂ − x‖
‖x‖

≤ cond(A) εmach

I Computed solution loses about log10(cond(A)) decimal digits of
accuracy relative to accuracy of input
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Error Bounds – Illustration

I In two dimensions, uncertainty in intersection point of two lines
depends on whether lines are nearly parallel

〈 interactive example 〉
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Error Bounds – Caveats

I Normwise analysis bounds relative error in largest components of
solution; relative error in smaller components can be much larger

I Componentwise error bounds can be obtained, but are somewhat
more complicated

I Conditioning of system is affected by relative scaling of rows or
columns

I Ill-conditioning can result from poor scaling as well as near
singularity

I Rescaling can help the former, but not the latter
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Residual

I Residual vector of approximate solution x̂ to linear system Ax = b
is defined by

r = b − Ax̂

I In theory, if A is nonsingular, then ‖x̂ − x‖ = 0 if, and only if,
‖r‖ = 0, but they are not necessarily small simultaneously

I Since
‖∆x‖
‖x̂‖

≤ cond(A)
‖r‖

‖A‖ · ‖x̂‖
small relative residual implies small relative error in approximate
solution only if A is well-conditioned



28

Residual, continued

I If computed solution x̂ exactly satisfies

(A + E )x̂ = b

then
‖r‖

‖A‖ ‖x̂‖
≤ ‖E‖
‖A‖

so large relative residual implies large backward error in matrix, and
algorithm used to compute solution is unstable

I Stable algorithm yields small relative residual regardless of
conditioning of nonsingular system

I Small residual is easy to obtain, but does not necessarily imply
computed solution is accurate
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Example: Small Residual

I For linear system

Ax =

[
0.913 0.659
0.457 0.330

] [
x1
x2

]
=

[
0.254
0.127

]
= b

consider two approximate solutions

x̂1 =

[
0.6391
−0.5

]
, x̂2 =

[
0.999
−1.001

]
I Norms of respective residuals are

‖r1‖1 = 7.0× 10−5, ‖r2‖1 = 2.4× 10−2

I Exact solution is x = [1,−1]T , so x̂2 is much more accurate than x̂1,
despite having much larger residual

I A is ill-conditioned (cond(A) > 104), so small residual does not
imply small error
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Solving Linear Systems
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Solving Linear Systems

I General strategy: To solve linear system, transform it into one whose
solution is same but easier to compute

I What type of transformation of linear system leaves solution
unchanged?

I We can premultiply (from left) both sides of linear system Ax = b
by any nonsingular matrix M without affecting solution

I Solution to MAx = Mb is given by

x = (MA)−1Mb = A−1M−1Mb = A−1b
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Example: Permutations

I Permutation matrix P has one 1 in each row and column and zeros
elsewhere, i.e., identity matrix with rows or columns permuted

I PT reverses permutation, so P−1 = PT

I Premultiplying both sides of system by permutation matrix,
PAx = Pb, reorders rows, but solution x is unchanged

I Postmultiplying A by permutation matrix, APx = b, reorders
columns, which permutes components of original solution

x = (AP)−1b = P−1A−1b = PT (A−1b)
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Example: Diagonal Scaling

I Row scaling: premultiplying both sides of system by nonsingular
diagonal matrix D, DAx = Db, multiplies each row of matrix and
right-hand side by corresponding diagonal entry of D, but solution x
is unchanged

I Column scaling: postmultiplying A by D, ADx = b, multiplies each
column of matrix by corresponding diagonal entry of D, which
rescales original solution

x = (AD)−1b = D−1A−1b
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Triangular Linear Systems

I What type of linear system is easy to solve?

I If one equation in system involves only one component of solution
(i.e., only one entry in that row of matrix is nonzero), then that
component can be computed by division

I If another equation in system involves only one additional solution
component, then by substituting one known component into it, we
can solve for other component

I If this pattern continues, with only one new solution component per
equation, then all components of solution can be computed in
succession.

I System with this property is called triangular
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Triangular Matrices

I Two specific triangular forms are of particular interest

I lower triangular : all entries above main diagonal are zero, aij = 0 for
i < j

I upper triangular : all entries below main diagonal are zero, aij = 0
for i > j

I Successive substitution process described earlier is especially easy to
formulate for lower or upper triangular systems

I Any triangular matrix can be permuted into upper or lower
triangular form by suitable row permutation
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Forward-Substitution

I Forward-substitution for lower triangular system Lx = b

x1 = b1/`11, xi =

bi −
i−1∑
j=1

`ijxj

 / `ii , i = 2, . . . , n

for j = 1 to n
if `jj = 0 then stop
xj = bj/`jj
for i = j + 1 to n

bi = bi − `ijxj
end

end

{ loop over columns }
{ stop if matrix is singular }
{ compute solution component }

{ update right-hand side }
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Back-Substitution

I Back-substitution for upper triangular system Ux = b

xn = bn/unn, xi =

bi −
n∑

j=i+1

uijxj

 / uii , i = n − 1, . . . , 1

for j = n to 1
if ujj = 0 then stop
xj = bj/ujj
for i = 1 to j − 1

bi = bi − uijxj
end

end

{ loop backwards over columns }
{ stop if matrix is singular }
{ compute solution component }

{ update right-hand side }
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Example: Triangular Linear System

2 4 −2
0 1 1
0 0 4

x1x2
x3

 =

2
4
8


I Using back-substitution for this upper triangular system, last

equation, 4x3 = 8, is solved directly to obtain x3 = 2

I Next, x3 is substituted into second equation to obtain x2 = 2

I Finally, both x3 and x2 are substituted into first equation to obtain
x1 = −1
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Elementary Elimination Matrices
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Elimination

I To transform general linear system into triangular form, need to
replace selected nonzero entries of matrix by zeros

I This can be accomplished by taking linear combinations of rows

I Consider 2-vector a =

[
a1
a2

]
I If a1 6= 0, then [

1 0
−a2/a1 1

] [
a1
a2

]
=

[
a1
0

]
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Elementary Elimination Matrices

I More generally, we can annihilate all entries below kth position in
n-vector a by transformation

Mka =



1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0
0 · · · −mk+1 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · −mn 0 · · · 1





a1
...
ak
ak+1

...
an


=



a1
...
ak
0
...
0


where mi = ai/ak , i = k + 1, . . . , n

I Divisor ak , called pivot, must be nonzero

I Matrix Mk , called elementary elimination matrix, adds multiple of
row k to each subsequent row, with multipliers mi chosen so that
result is zero
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Elementary Elimination Matrices, continued

I Mk is unit lower triangular and nonsingular

I Mk = I −mkeT
k , where mk = [0, . . . , 0,mk+1, . . . ,mn]T and ek is

kth column of identity matrix

I M−1k = I + mkeT
k , which means M−1k = Lk is same as Mk except

signs of multipliers are reversed

I If Mj , j > k, is another elementary elimination matrix, with vector
of multipliers mj , then

MkMj = I −mkeT
k −mjeT

j + mkeT
k mjeT

j

= I −mkeT
k −mjeT

j

which means their product is essentially their “union” and similarly
for product of inverses, LkLj
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Example: Elementary Elimination Matrices

I For a =

 2
4
−2

,

M1a =

 1 0 0
−2 1 0

1 0 1

 2
4
−2

 =

2
0
0


and

M2a =

1 0 0
0 1 0
0 1/2 1

 2
4
−2

 =

2
4
0


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Example, continued

I Note that

L1 = M−11 =

 1 0 0
2 1 0
−1 0 1

 , L2 = M−12 =

1 0 0
0 1 0
0 −1/2 1


and

M1M2 =

 1 0 0
−2 1 0

1 1/2 1

 , L1L2 =

 1 0 0
2 1 0
−1 −1/2 1


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LU Factorization by Gaussian Elimination
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Gaussian Elimination
I To reduce general linear system Ax = b to upper triangular form,

first choose M1, with a11 as pivot, to annihilate first column of A
below first row

I System becomes M1Ax = M1b, but solution is unchanged

I Next choose M2, using a22 as pivot, to annihilate second column of
M1A below second row

I System becomes M2M1Ax = M2M1b, but solution is still unchanged

I Process continues for each successive column until all subdiagonal
entries have been zeroed

I Resulting upper triangular linear system

Mn−1 · · ·M1Ax = Mn−1 · · ·M1b
MAx = Mb

can be solved by back-substitution to obtain solution to original
linear system Ax = b

I Process just described is called Gaussian elimination
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LU Factorization

I Product LkLj is unit lower triangular if k < j , so

L = M−1 = M−11 · · ·M
−1
n−1 = L1 · · ·Ln−1

is unit lower triangular

I By design, MA = U is upper triangular

I So we have
A = LU

with L unit lower triangular and U upper triangular

I Thus, Gaussian elimination produces LU factorization of matrix into
triangular factors
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LU Factorization, continued

I Having obtained LU factorization A = LU , equation Ax = b
becomes

LUx = b

which can be solved by

I solving lower triangular system Ly = b for y by forward-substitution

I then solving upper triangular system Ux = y for x by
back-substitution

I Note that y = Mb is same as transformed right-hand side in
Gaussian elimination

I Gaussian elimination and LU factorization are two ways of expressing
same solution process
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LU Factorization by Gaussian Elimination

for k = 1 to n − 1
if akk = 0 then stop
for i = k + 1 to n

mik = aik/akk
end
for j = k + 1 to n

for i = k + 1 to n
aij = aij −mikakj

end
end

end

{ loop over columns }
{ stop if pivot is zero }
{ compute multipliers

for current column }

{ apply transformation to
remaining submatrix }



50

Example: Gaussian Elimination

I Use Gaussian elimination to solve linear system

Ax =

 2 4 −2
4 9 −3
−2 −3 7

x1x2
x3

 =

 2
8

10

 = b

I To annihilate subdiagonal entries of first column of A,

M1A =

 1 0 0
−2 1 0

1 0 1

 2 4 −2
4 9 −3
−2 −3 7

 =

2 4 −2
0 1 1
0 1 5

 ,

M1b =

 1 0 0
−2 1 0

1 0 1

 2
8

10

 =

 2
4

12


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Example, continued
I To annihilate subdiagonal entry of second column of M1A,

M2M1A =

1 0 0
0 1 0
0 −1 1

2 4 −2
0 1 1
0 1 5

 =

2 4 −2
0 1 1
0 0 4

 = U ,

M2M1b =

1 0 0
0 1 0
0 −1 1

 2
4

12

 =

2
4
8

 = Mb

I We have reduced original system to equivalent upper triangular
system

Ux =

2 4 −2
0 1 1
0 0 4

x1x2
x3

 =

2
4
8

 = Mb

which can now be solved by back-substitution to obtain x =

−1
2
2


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Example, continued

I To write out LU factorization explicitly,

L1L2 =

 1 0 0
2 1 0
−1 0 1

1 0 0
0 1 0
0 1 1

 =

 1 0 0
2 1 0
−1 1 1

 = L

so that

A =

 2 4 −2
4 9 −3
−2 −3 7

 =

 1 0 0
2 1 0
−1 1 1

2 4 −2
0 1 1
0 0 4

 = LU
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Pivoting
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Row Interchanges

I Gaussian elimination breaks down if leading diagonal entry of
remaining unreduced matrix is zero at any stage

I Easy fix: if diagonal entry in column k is zero, then interchange row
k with some subsequent row having nonzero entry in column k and
then proceed as usual

I If there is no nonzero on or below diagonal in column k , then there
is nothing to do at this stage, so skip to next column

I Zero on diagonal causes resulting upper triangular matrix U to be
singular, but LU factorization can still be completed

I Subsequent back-substitution will fail, however, as it should for
singular matrix
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Partial Pivoting

I In principle, any nonzero value will do as pivot, but in practice pivot
should be chosen to minimize error propagation

I To avoid amplifying previous rounding errors when multiplying
remaining portion of matrix by elementary elimination matrix,
multipliers should not exceed 1 in magnitude

I This can be accomplished by choosing entry of largest magnitude on
or below diagonal as pivot at each stage

I Such partial pivoting is essential in practice for numerically stable
implementation of Gaussian elimination for general linear systems

〈 interactive example 〉
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LU Factorization with Partial Pivoting

I With partial pivoting, each Mk is preceded by permutation Pk to
interchange rows to bring entry of largest magnitude into diagonal
pivot position

I Still obtain MA = U , with U upper triangular, but now

M = Mn−1Pn−1 · · ·M1P1

I L = M−1 is still triangular in general sense, but not necessarily lower
triangular

I Alternatively, we can write

PA = LU

where P = Pn−1 · · ·P1 permutes rows of A into order determined by
partial pivoting, and now L is lower triangular
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Complete Pivoting

I Complete pivoting is more exhaustive strategy in which largest entry
in entire remaining unreduced submatrix is permuted into diagonal
pivot position

I Requires interchanging columns as well as rows, leading to
factorization

PAQ = LU

with L unit lower triangular, U upper triangular, and P and Q
permutations

I Numerical stability of complete pivoting is theoretically superior, but
pivot search is more expensive than for partial pivoting

I Numerical stability of partial pivoting is more than adequate in
practice, so it is almost always used in solving linear systems by
Gaussian elimination



58

Example: Pivoting

I Need for pivoting has nothing to do with whether matrix is singular
or nearly singular

I For example,

A =

[
0 1
1 0

]
is nonsingular yet has no LU factorization unless rows are
interchanged, whereas

A =

[
1 1
1 1

]
is singular yet has LU factorization
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Example: Small Pivots
I To illustrate effect of small pivots, consider

A =

[
ε 1
1 1

]
where ε is positive number smaller than εmach

I If rows are not interchanged, then pivot is ε and multiplier is −1/ε,
so

M =

[
1 0
−1/ε 1

]
, L =

[
1 0

1/ε 1

]
,

U =

[
ε 1
0 1− 1/ε

]
=

[
ε 1
0 −1/ε

]
in floating-point arithmetic, but then

LU =

[
1 0

1/ε 1

] [
ε 1
0 −1/ε

]
=

[
ε 1
1 0

]
6= A
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Example, continued

I Using small pivot, and correspondingly large multiplier, has caused
loss of information in transformed matrix

I If rows interchanged, then pivot is 1 and multiplier is −ε, so

M =

[
1 0
−ε 1

]
, L =

[
1 0
ε 1

]
,

U =

[
1 1
0 1− ε

]
=

[
1 1
0 1

]
in floating-point arithmetic

I Thus,

LU =

[
1 0
ε 1

] [
1 1
0 1

]
=

[
1 1
ε 1

]
which is correct after permutation
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Pivoting, continued

I Although pivoting is generally required for stability of Gaussian
elimination, pivoting is not required for some important classes of
matrices

I Diagonally dominant

n∑
i=1, i 6=j

|aij | < |ajj |, j = 1, . . . , n

I Symmetric positive definite

A = AT and xTAx > 0 for all x 6= 0
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Residual
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Residual

I Residual r = b − Ax̂ for solution x̂ computed using Gaussian
elimination satisfies

‖r‖
‖A‖ ‖x̂‖

≤ ‖E‖
‖A‖

≤ ρ n2 εmach

where E is backward error in matrix A and growth factor ρ is ratio
of largest entry of U to largest entry of A

I Without pivoting, ρ can be arbitrarily large, so Gaussian elimination
without pivoting is unstable

I With partial pivoting, ρ can still be as large as 2n−1, but such
behavior is extremely rare
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Residual, continued

I There is little or no growth in practice, so

‖r‖
‖A‖ ‖x̂‖

≤ ‖E‖
‖A‖

/ n εmach

which means Gaussian elimination with partial pivoting yields small
relative residual regardless of conditioning of system

I Thus, small relative residual does not necessarily imply computed
solution is close to “true” solution unless system is well-conditioned

I Complete pivoting yields even smaller growth factor, but additional
margin of stability is not usually worth extra cost
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Example: Small Residual

I Use 4-digit decimal arithmetic to solve[
0.913 0.659
0.457 0.330

] [
x1
x2

]
=

[
0.254
0.127

]
I Gaussian elimination with partial pivoting yields triangular system[

0.9130 0.6590
0 0.0002

] [
x1
x2

]
=

[
0.2540
−0.0001

]
I Back-substitution then gives solution

x̂ =
[
0.6391 −0.5

]T
I Exact residual norm for this solution is 7.04× 10−5, as small as we

can expect using 4-digit arithmetic
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Example, continued

I But exact solution is

x =
[
1.00 1.00

]T
so error is almost as large as solution

I Cause of this phenomenon is that matrix is nearly singular
(cond(A) > 104)

I Division that determines x2 is between two quantities that are both
on order of rounding error, and hence result is essentially arbitrary

I When arbitrary value for x2 is substituted into first equation, value
for x1 is computed so that first equation is satisfied, yielding small
residual, but poor solution
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Implementing Gaussian Elimination
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Implementing Gaussian Elimination

I Gaussian elimination has general form of triple-nested loop

for
for

for
aij = aij − (aik/akk)akj

end
end

end

I Indices i , j , and k of for loops can be taken in any order, for total of
3! = 6 different arrangements

I These variations have different memory access patterns, which may
cause their performance to vary widely on different computers
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Uniqueness of LU Factorization

I Despite variations in computing it, LU factorization is unique up to
diagonal scaling of factors

I Provided row pivot sequence is same, if we have two LU
factorizations PA = LU = L̂Û , then L̂−1L = ÛU−1 = D is both
lower and upper triangular, hence diagonal

I If both L and L̂ are unit lower triangular, then D must be identity
matrix, so L = L̂ and U = Û

I Uniqueness is made explicit in LDU factorization PA = LDU , with L
unit lower triangular, U unit upper triangular, and D diagonal
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Storage Management

I Elementary elimination matrices Mk , their inverses Lk , and
permutation matrices Pk used in formal description of LU
factorization process are not formed explicitly in actual
implementation

I U overwrites upper triangle of A, multipliers in L overwrite strict
lower triangle of A, and unit diagonal of L need not be stored

I Row interchanges usually are not done explicitly; auxiliary integer
vector keeps track of row order in original locations
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Complexity of Solving Linear Systems

I LU factorization requires about n3/3 floating-point multiplications
and similar number of additions

I Forward- and back-substitution for single right-hand-side vector
together require about n2 multiplications and similar number of
additions

I Can also solve linear system by matrix inversion: x = A−1b

I Computing A−1 is tantamount to solving n linear systems, requiring
LU factorization of A followed by n forward- and back-substitutions,
one for each column of identity matrix

I Operation count for inversion is about n3, three times as expensive
as LU factorization
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Inversion vs. Factorization

I Even with many right-hand sides b, inversion never overcomes higher
initial cost, since each matrix-vector multiplication A−1b requires n2

operations, similar to cost of forward- and back-substitution

I Inversion gives less accurate answer; for example, solving 3x = 18 by
division gives x = 18/3 = 6, but inversion gives
x = 3−1 × 18 = 0.333× 18 = 5.99 using 3-digit arithmetic

I Matrix inverses often occur as convenient notation in formulas, but
explicit inverse is rarely required to implement such formulas

I For example, product A−1B should be computed by LU
factorization of A, followed by forward- and back-substitutions using
each column of B
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Gauss-Jordan Elimination

I In Gauss-Jordan elimination, matrix is reduced to diagonal rather
than triangular form

I Row combinations are used to annihilate entries above as well as
below diagonal

I Elimination matrix used for given column vector a is of form

1 · · · 0 −m1 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 1 −mk−1 0 · · · 0
0 · · · 0 1 0 · · · 0
0 · · · 0 −mk+1 1 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 −mn 0 · · · 1





a1
...

ak−1

ak
ak+1

...
an


=



0
...
0
ak
0
...
0


where mi = ai/ak , i = 1, . . . , n
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Gauss-Jordan Elimination, continued

I Gauss-Jordan elimination requires about n3/2 multiplications and
similar number of additions, 50% more expensive than LU
factorization

I During elimination phase, same row operations are also applied to
right-hand-side vector (or vectors) of system of linear equations

I Once matrix is in diagonal form, components of solution are
computed by dividing each entry of transformed right-hand side by
corresponding diagonal entry of matrix

I Latter requires only n divisions, but this is not enough cheaper to
offset more costly elimination phase

〈 interactive example 〉
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Updating Solutions
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Solving Modified Problems

I If right-hand side of linear system changes but matrix does not, then
LU factorization need not be repeated to solve new system

I Only forward- and back-substitution need be repeated for new
right-hand side

I This is substantial savings in work, since additional triangular
solutions cost only O(n2) work, in contrast to O(n3) cost of
factorization
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Sherman-Morrison Formula

I Sometimes refactorization can be avoided even when matrix does
change

I Sherman-Morrison formula gives inverse of matrix resulting from
rank-one change to matrix whose inverse is already known

(A− uvT )−1 = A−1 + A−1u(1− vTA−1u)−1vTA−1

where u and v are n-vectors

I Evaluation of formula requires O(n2) work (for matrix-vector
multiplications) rather than O(n3) work required for inversion
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Rank-One Updating of Solution

I To solve linear system (A− uvT )x = b with new matrix, use
Sherman-Morrison formula to obtain

x = (A− uvT )−1b
= A−1b + A−1u(1− vTA−1u)−1vTA−1b

which can be implemented by following steps

I Solve Az = u for z , so z = A−1u
I Solve Ay = b for y , so y = A−1b
I Compute x = y + ((vT y)/(1− vT z))z

I If A is already factored, procedure requires only triangular solutions
and inner products, so only O(n2) work and no explicit inverses
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Example: Rank-One Updating of Solution

I Consider rank-one modification 2 4 −2
4 9 −3
−2 −1 7

x1x2
x3

 =

 2
8

10


(with 3, 2 entry changed) of system whose LU factorization was
computed in earlier example

I One way to choose update vectors is

u =

 0
0
−2

 and v =

0
1
0


so matrix of modified system is A− uvT
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Example, continued

I Using LU factorization of A to solve Az = u and Ay = b,

z =

−3/2
1/2
−1/2

 and y =

−1
2
2


I Final step computes updated solution

x = y +
vTy

1− vT z
z =

−1
2
2

+
2

1− 1/2

−3/2
1/2
−1/2

 =

−7
4
0


I We have thus computed solution to modified system without

factoring modified matrix
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Improving Accuracy
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Scaling Linear Systems

I In principle, solution to linear system is unaffected by diagonal
scaling of matrix and right-hand-side vector

I In practice, scaling affects both conditioning of matrix and selection
of pivots in Gaussian elimination, which in turn affect numerical
accuracy in finite-precision arithmetic

I It is usually best if all entries (or uncertainties in entries) of matrix
have about same size

I Sometimes it may be obvious how to accomplish this by choice of
measurement units for variables, but there is no foolproof method
for doing so in general

I Scaling can introduce rounding errors if not done carefully
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Example: Scaling

I Linear system [
1 0
0 ε

] [
x1
x2

]
=

[
1
ε

]
has condition number 1/ε, so is ill-conditioned if ε is small

I If second row is multiplied by 1/ε, then system becomes perfectly
well-conditioned

I Apparent ill-conditioning was due purely to poor scaling

I In general, it is usually much less obvious how to correct poor scaling
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Iterative Refinement

I Given approximate solution x0 to linear system Ax = b, compute
residual

r0 = b − Ax0
I Now solve linear system Az0 = r0 and take

x1 = x0 + z0

as new and “better” approximate solution, since

Ax1 = A(x0 + z0) = Ax0 + Az0
= (b − r0) + r0 = b

I Process can be repeated to refine solution successively until
convergence, potentially producing solution accurate to full machine
precision
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Iterative Refinement, continued

I Iterative refinement requires double storage, since both original
matrix and its LU factorization are required

I Due to cancellation, residual usually must be computed with higher
precision for iterative refinement to produce meaningful
improvement

I For these reasons, iterative improvement is often impractical to use
routinely, but it can still be useful in some circumstances

I For example, iterative refinement can sometimes stabilize otherwise
unstable algorithm
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Special Types of Linear Systems
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Special Types of Linear Systems

I Work and storage can often be saved in solving linear system if
matrix has special properties

I Examples include

I Symmetric : A = AT , aij = aji for all i , j

I Positive definite : xTAx > 0 for all x 6= 0

I Band : aij = 0 for all |i − j | > β, where β is bandwidth of A

I Sparse : most entries of A are zero
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Symmetric Positive Definite Matrices

I If A is symmetric and positive definite, then LU factorization can be
arranged so that U = LT , which gives Cholesky factorization

A = LLT

where L is lower triangular with positive diagonal entries

I Algorithm for computing it can be derived by equating
corresponding entries of A and LLT

I In 2× 2 case, for example,[
a11 a21
a21 a22

]
=

[
l11 0
l21 l22

] [
l11 l21
0 l22

]
implies

l11 =
√
a11, l21 = a21/l11, l22 =

√
a22 − l221
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Cholesky Factorization

I One way to write resulting algorithm, in which Cholesky factor L
overwrites lower triangle of original matrix A, is

for k = 1 to n
akk =

√
akk

for i = k + 1 to n
aik = aik/akk

end
for j = k + 1 to n

for i = j to n
aij = aij − aik · ajk

end
end

end

{ loop over columns }

{ scale current column }

{ from each remaining column,
subtract multiple
of current column }
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Cholesky Factorization, continued

I Features of Cholesky algorithm for symmetric positive definite
matrices

I All n square roots are of positive numbers, so algorithm is well
defined

I No pivoting is required to maintain numerical stability

I Only lower triangle of A is accessed, and hence upper triangular
portion need not be stored

I Only n3/6 multiplications and similar number of additions are
required

I Thus, Cholesky factorization requires only about half work and half
storage compared with LU factorization of general matrix by
Gaussian elimination, and also avoids need for pivoting

〈 interactive example 〉
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Symmetric Indefinite Systems

I For symmetric indefinite A, Cholesky factorization is not applicable,
and some form of pivoting is generally required for numerical
stability

I Factorization of form
PAPT = LDLT

with L unit lower triangular and D either tridiagonal or block
diagonal with 1× 1 and 2× 2 diagonal blocks, can be computed
stably using symmetric pivoting strategy

I In either case, cost is comparable to that of Cholesky factorization
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Band Matrices

I Gaussian elimination for band matrices differs little from general
case — only ranges of loops change

I Typically matrix is stored in array by diagonals to avoid storing zero
entries

I If pivoting is required for numerical stability, bandwidth can grow
(but no more than double)

I General purpose solver for arbitrary bandwidth is similar to code for
Gaussian elimination for general matrices

I For fixed small bandwidth, band solver can be extremely simple,
especially if pivoting is not required for stability
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Tridiagonal Matrices

I Consider tridiagonal matrix

A =



b1 c1 0 · · · 0

a2 b2 c2
. . .

...

0
. . .

. . .
. . . 0

...
. . . an−1 bn−1 cn−1

0 · · · 0 an bn



I Gaussian elimination without pivoting reduces to

d1 = b1
for i = 2 to n

mi = ai/di−1
di = bi −mici−1

end
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Tridiagonal Matrices, continued

I LU factorization of A is then given by

L =



1 0 · · · · · · 0

m2 1
. . .

...

0
. . .

. . .
. . .

...
...

. . . mn−1 1 0
0 · · · 0 mn 1


, U =



d1 c1 0 · · · 0

0 d2 c2
. . .

...
...

. . .
. . .

. . . 0
...

. . . dn−1 cn−1

0 · · · · · · 0 dn


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General Band Matrices

I In general, band system of bandwidth β requires O(βn) storage, and
its factorization requires O(β2n) work

I Compared with full system, savings is substantial if β � n
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Iterative Methods for Linear Systems

I Gaussian elimination is direct method for solving linear system,
producing exact solution in finite number of steps (in exact
arithmetic)

I Iterative methods begin with initial guess for solution and
successively improve it until desired accuracy attained

I In theory, it might take infinite number of iterations to converge to
exact solution, but in practice iterations are terminated when
residual is as small as desired

I For some types of problems, iterative methods have significant
advantages over direct methods

I We will study specific iterative methods later when we consider
solution of partial differential equations
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Software for Linear Systems
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LINPACK and LAPACK

I LINPACK is software package for solving wide variety of systems of
linear equations, both general dense systems and special systems,
such as symmetric or banded

I Solving linear systems is of such fundamental importance in
scientific computing that LINPACK has become standard benchmark
for comparing performance of computers

I LAPACK is more recent replacement for LINPACK featuring higher
performance on modern computer architectures, including many
parallel computers

I Both LINPACK and LAPACK are available from Netlib.org

I Linear system solvers underlying MATLAB and Python’s NumPy and
SciPy libraries are based on LAPACK
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BLAS – Basic Linear Algebra Subprograms

I High-level routines in LINPACK and LAPACK are based on lower-level
Basic Linear Algebra Subprograms (BLAS)

I BLAS encapsulate basic operations on vectors and matrices so they
can be optimized for given computer architecture while high-level
routines that call them remain portable

I Higher-level BLAS encapsulate matrix-vector and matrix-matrix
operations for better utilization of memory hierarchies such as cache
and virtual memory with paging

I Generic versions of BLAS are available from Netlib.org, and many
computer vendors provide custom versions optimized for their
particular systems
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Examples of BLAS

Level Data Work Examples Function

1 O(n) O(n) saxpy Scalar × vector + vector
sdot Inner product
snrm2 Euclidean vector norm

2 O(n2) O(n2) sgemv Matrix-vector product
strsv Triangular solution
sger Rank-one update

3 O(n2) O(n3) sgemm Matrix-matrix product
strsm Multiple triang. solutions
ssyrk Rank-k update

Level-3 BLAS have more opportunity for data reuse, and hence higher
performance, because they perform more operations per data item than
lower-level BLAS
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Summary - Solving Linear Systems

I Solving linear systems is fundamental in scientific computing

I Sensitivity of solution to linear system is measured by cond(A)

I Triangular linear system is easily solved by successive substitution

I General linear system can be solved by transforming it to triangular
form by Gaussian elimination (LU factorization)

I Pivoting is essential for stable implementation of Gaussian
elimination

I Specialized algorithms and software are available for solving
particular types of linear systems
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