
CS 450 – Numerical Analysis

Chapter 2: Systems of Linear Equations †

Prof. Michael T. Heath

Department of Computer Science
University of Illinois at Urbana-Champaign

heath@illinois.edu

January 28, 2019

†Lecture slides based on the textbook Scientific Computing: An Introductory
Survey by Michael T. Heath, copyright c© 2018 by the Society for Industrial and
Applied Mathematics. http://www.siam.org/books/cl80

http://www.siam.org/books/cl80

2

Systems of Linear Equations

3

Review: Matrix-Vector Product

Ax =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n




x1
x2
...
xn



=


a1,1x1 + a1,2x2 + · · ·+ a1,nxn
a2,1x1 + a2,2x2 + · · ·+ a2,nxn

...
am,1x1 + am,2x2 + · · ·+ am,nxn



= x1


a1,1
a2,1

...
am,1

+ x2


a1,2
a2,2

...
am,2

+ · · ·+ xn


a1,n
a2,n

...
am,n


Definition: For A ∈ Rm×n, span(A) = {Ax : x ∈ Rn}

4

System of Linear Equations

A x = b

I Given m × n matrix A and m-vector b, find unknown n-vector x
satisfying Ax = b

I System of equations asks whether b can be expressed as linear
combination of columns of A, or equivalently, is b ∈ span(A)?

I If so, coefficients of linear combination are components of solution
vector x

I Solution may or may not exist, and may or may not be unique

I For now, we consider only square case, m = n

5

Singularity and Nonsingularity

n × n matrix A is nonsingular if it has any of following equivalent
properties

1. Inverse of A, denoted by A−1, exists such that AA−1 = A−1A = I

2. det(A) 6= 0

3. rank(A) = n

4. For any vector z 6= 0, Az 6= 0

6

Existence and Uniqueness

I Existence and uniqueness of solution to Ax = b depend on whether
A is singular or nonsingular

I Can also depend on b, but only in singular case

I If b ∈ span(A), system is consistent

A b # solutions
nonsingular arbitrary 1

singular b ∈ span(A) ∞

singular b /∈ span(A) 0

7

Geometric Interpretation

I In two dimensions, each equation determines straight line in plane

I Solution is intersection point of two straight lines, if any

I If two straight lines are not parallel (nonsingular), then their
intersection point is unique solution

I If two straight lines are parallel (singular), then they either do not
intersect (no solution) or else they coincide (any point along line is
solution)

I In higher dimensions, each equation determines hyperplane; if matrix
is nonsingular, intersection of hyperplanes is unique solution

8

Example: Nonsingularity

I 2× 2 system

2x1 + 3x2 = b1

5x1 + 4x2 = b2

or in matrix-vector notation

Ax =

[
2 3
5 4

] [
x1
x2

]
=

[
b1
b2

]
= b

is nonsingular and thus has unique solution regardless of value of b

I For example, if b =
[
8 13

]T
, then x =

[
1 2

]T
is unique solution

9

Example: Singularity

I 2× 2 system

Ax =

[
2 3
4 6

] [
x1
x2

]
=

[
b1
b2

]
= b

is singular regardless of value of b

I With b =
[
4 7

]T
, there is no solution

I With b =
[
4 8

]T
, x =

[
γ (4− 2γ)/3

]T
is solution for any real

number γ, so there are infinitely many solutions

10

Norms and Condition Number

11

Vector Norms

I Magnitude (absolute value, modulus) for scalars generalizes to norm
for vectors

I We will use only p-norms, defined by

‖x‖p =

(
n∑

i=1

|xi |p
)1/p

for integer p > 0 and n-vector x

I Important special cases

I 1-norm: ‖x‖1 =
∑n

i=1|xi |

I 2-norm: ‖x‖2 =
(∑n

i=1 |xi |
2
)1/2

I ∞-norm: ‖x‖∞ = maxi |xi |

12

Example: Vector Norms
I Drawing shows unit “circle” in two dimensions for each norm

I Norms have following values for vector shown

‖x‖1 = 2.8, ‖x‖2 = 2.0, ‖x‖∞ = 1.6

〈 interactive example 〉

13

Equivalence of Norms

I In general, for any vector x in Rn, ‖x‖1 ≥ ‖x‖2 ≥ ‖x‖∞

I However, we also have

I ‖x‖1 ≤
√
n · ‖x‖2

I ‖x‖2 ≤
√
n · ‖x‖∞

I ‖x‖1 ≤ n · ‖x‖∞

I For given n, norms differ by at most a constant, and hence are
equivalent: if one is small, all must be proportionally small

I Consequently, we can use whichever norm is most convenient in
given context

14

Properties of Vector Norms

I For any vector norm

I ‖x‖ > 0 if x 6= 0

I ‖γx‖ = |γ| · ‖x‖ for any scalar γ

I ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

I In more general treatment, these properties taken as definition of
vector norm

I Useful variation on triangle inequality

I | ‖x‖ − ‖y‖ | ≤ ‖x − y‖

15

Matrix Norms

I Matrix norm induced by a given vector norm is defined by

‖A‖ = maxx 6=0
‖Ax‖
‖x‖

I Norm of matrix measures maximum relative stretching matrix does
to any vector in given vector norm

16

Example Matrix Norms

I Matrix norm induced by vector 1-norm is maximum absolute column
sum

‖A‖1 = max
j

n∑
i=1

|aij |

I Matrix norm induced by vector ∞-norm is maximum absolute row
sum

‖A‖∞ = max
i

n∑
j=1

|aij |

I Handy way to remember these is that matrix norms agree with
corresponding vector norms for n × 1 matrix

I No simple formula for matrix 2-norm

17

Properties of Matrix Norms

I Any matrix norm satisfies

I ‖A‖ > 0 if A 6= 0

I ‖γA‖ = |γ| · ‖A‖ for any scalar γ

I ‖A + B‖ ≤ ‖A‖+ ‖B‖

I Matrix norms we have defined also satisfy

I ‖AB‖ ≤ ‖A‖ · ‖B‖

I ‖Ax‖ ≤ ‖A‖ · ‖x‖ for any vector x

18

Condition Number

I Condition number of square nonsingular matrix A is defined by

cond(A) = ‖A‖ · ‖A−1‖

I By convention, cond(A) =∞ if A is singular

I Since

‖A‖ · ‖A−1‖ =

(
max
x 6=0

‖Ax‖
‖x‖

)
·
(

min
x 6=0

‖Ax‖
‖x‖

)−1
condition number measures ratio of maximum stretching to
maximum shrinking matrix does to any nonzero vectors

I Large cond(A) means A is nearly singular

19

Properties of Condition Number

I For any matrix A, cond(A) ≥ 1

I For identity matrix I , cond(I) = 1

I For any matrix A and scalar γ, cond(γA) = cond(A)

I For any diagonal matrix D = diag(di), cond(D) =
max |di |
min |di |

〈 interactive example 〉

20

Computing Condition Number

I Definition of condition number involves matrix inverse, so it is
nontrivial to compute

I Computing condition number from definition would require much
more work than computing solution whose accuracy is to be assessed

I In practice, condition number is estimated inexpensively as
byproduct of solution process

I Matrix norm ‖A‖ is easily computed as maximum absolute column
sum (or row sum, depending on norm used)

I Estimating ‖A−1‖ at low cost is more challenging

21

Computing Condition Number, continued

I From properties of norms, if Az = y , then

‖z‖
‖y‖

≤ ‖A−1‖

and this bound is achieved for optimally chosen y

I Efficient condition estimators heuristically pick y with large ratio
‖z‖/‖y‖, yielding good estimate for ‖A−1‖

I Good software packages for linear systems provide efficient and
reliable condition estimator

I Condition number useful in assessing accuracy of approximate
solution

22

Assessing Accuracy

23

Error Bounds

I Condition number yields error bound for approximate solution to
linear system

I Let x be solution to Ax = b, and let x̂ be solution to Ax̂ = b + ∆b

I If ∆x = x̂ − x , then

b + ∆b = A(x̂) = A(x + ∆x) = Ax + A∆x

which leads to bound

‖∆x‖
‖x‖

≤ cond(A)
‖∆b‖
‖b‖

for possible relative change in solution x due to relative change in
right-hand side b

〈 interactive example 〉

24

Error Bounds, continued

I Similar result holds for relative change in matrix: if (A + E)x̂ = b,
then

‖∆x‖
‖x̂‖

≤ cond(A)
‖E‖
‖A‖

I If input data are accurate to machine precision, then bound for
relative error in solution x becomes

‖x̂ − x‖
‖x‖

≤ cond(A) εmach

I Computed solution loses about log10(cond(A)) decimal digits of
accuracy relative to accuracy of input

25

Error Bounds – Illustration

I In two dimensions, uncertainty in intersection point of two lines
depends on whether lines are nearly parallel

〈 interactive example 〉

26

Error Bounds – Caveats

I Normwise analysis bounds relative error in largest components of
solution; relative error in smaller components can be much larger

I Componentwise error bounds can be obtained, but are somewhat
more complicated

I Conditioning of system is affected by relative scaling of rows or
columns

I Ill-conditioning can result from poor scaling as well as near
singularity

I Rescaling can help the former, but not the latter

27

Residual

I Residual vector of approximate solution x̂ to linear system Ax = b
is defined by

r = b − Ax̂

I In theory, if A is nonsingular, then ‖x̂ − x‖ = 0 if, and only if,
‖r‖ = 0, but they are not necessarily small simultaneously

I Since
‖∆x‖
‖x̂‖

≤ cond(A)
‖r‖

‖A‖ · ‖x̂‖
small relative residual implies small relative error in approximate
solution only if A is well-conditioned

28

Residual, continued

I If computed solution x̂ exactly satisfies

(A + E)x̂ = b

then
‖r‖

‖A‖ ‖x̂‖
≤ ‖E‖
‖A‖

so large relative residual implies large backward error in matrix, and
algorithm used to compute solution is unstable

I Stable algorithm yields small relative residual regardless of
conditioning of nonsingular system

I Small residual is easy to obtain, but does not necessarily imply
computed solution is accurate

29

Example: Small Residual

I For linear system

Ax =

[
0.913 0.659
0.457 0.330

] [
x1
x2

]
=

[
0.254
0.127

]
= b

consider two approximate solutions

x̂1 =

[
0.6391
−0.5

]
, x̂2 =

[
0.999
−1.001

]
I Norms of respective residuals are

‖r1‖1 = 7.0× 10−5, ‖r2‖1 = 2.4× 10−2

I Exact solution is x = [1,−1]T , so x̂2 is much more accurate than x̂1,
despite having much larger residual

I A is ill-conditioned (cond(A) > 104), so small residual does not
imply small error

30

Solving Linear Systems

31

Solving Linear Systems

I General strategy: To solve linear system, transform it into one whose
solution is same but easier to compute

I What type of transformation of linear system leaves solution
unchanged?

I We can premultiply (from left) both sides of linear system Ax = b
by any nonsingular matrix M without affecting solution

I Solution to MAx = Mb is given by

x = (MA)−1Mb = A−1M−1Mb = A−1b

32

Example: Permutations

I Permutation matrix P has one 1 in each row and column and zeros
elsewhere, i.e., identity matrix with rows or columns permuted

I PT reverses permutation, so P−1 = PT

I Premultiplying both sides of system by permutation matrix,
PAx = Pb, reorders rows, but solution x is unchanged

I Postmultiplying A by permutation matrix, APx = b, reorders
columns, which permutes components of original solution

x = (AP)−1b = P−1A−1b = PT (A−1b)

33

Example: Diagonal Scaling

I Row scaling: premultiplying both sides of system by nonsingular
diagonal matrix D, DAx = Db, multiplies each row of matrix and
right-hand side by corresponding diagonal entry of D, but solution x
is unchanged

I Column scaling: postmultiplying A by D, ADx = b, multiplies each
column of matrix by corresponding diagonal entry of D, which
rescales original solution

x = (AD)−1b = D−1A−1b

34

Triangular Linear Systems

I What type of linear system is easy to solve?

I If one equation in system involves only one component of solution
(i.e., only one entry in that row of matrix is nonzero), then that
component can be computed by division

I If another equation in system involves only one additional solution
component, then by substituting one known component into it, we
can solve for other component

I If this pattern continues, with only one new solution component per
equation, then all components of solution can be computed in
succession.

I System with this property is called triangular

35

Triangular Matrices

I Two specific triangular forms are of particular interest

I lower triangular : all entries above main diagonal are zero, aij = 0 for
i < j

I upper triangular : all entries below main diagonal are zero, aij = 0
for i > j

I Successive substitution process described earlier is especially easy to
formulate for lower or upper triangular systems

I Any triangular matrix can be permuted into upper or lower
triangular form by suitable row permutation

36

Forward-Substitution

I Forward-substitution for lower triangular system Lx = b

x1 = b1/`11, xi =

bi −
i−1∑
j=1

`ijxj

 / `ii , i = 2, . . . , n

for j = 1 to n
if `jj = 0 then stop
xj = bj/`jj
for i = j + 1 to n

bi = bi − `ijxj
end

end

{ loop over columns }
{ stop if matrix is singular }
{ compute solution component }

{ update right-hand side }

37

Back-Substitution

I Back-substitution for upper triangular system Ux = b

xn = bn/unn, xi =

bi −
n∑

j=i+1

uijxj

 / uii , i = n − 1, . . . , 1

for j = n to 1
if ujj = 0 then stop
xj = bj/ujj
for i = 1 to j − 1

bi = bi − uijxj
end

end

{ loop backwards over columns }
{ stop if matrix is singular }
{ compute solution component }

{ update right-hand side }

38

Example: Triangular Linear System

2 4 −2
0 1 1
0 0 4

x1x2
x3

 =

2
4
8


I Using back-substitution for this upper triangular system, last

equation, 4x3 = 8, is solved directly to obtain x3 = 2

I Next, x3 is substituted into second equation to obtain x2 = 2

I Finally, both x3 and x2 are substituted into first equation to obtain
x1 = −1

39

Elementary Elimination Matrices

40

Elimination

I To transform general linear system into triangular form, need to
replace selected nonzero entries of matrix by zeros

I This can be accomplished by taking linear combinations of rows

I Consider 2-vector a =

[
a1
a2

]
I If a1 6= 0, then [

1 0
−a2/a1 1

] [
a1
a2

]
=

[
a1
0

]

41

Elementary Elimination Matrices

I More generally, we can annihilate all entries below kth position in
n-vector a by transformation

Mka =



1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0
0 · · · −mk+1 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · −mn 0 · · · 1





a1
...
ak
ak+1

...
an


=



a1
...
ak
0
...
0


where mi = ai/ak , i = k + 1, . . . , n

I Divisor ak , called pivot, must be nonzero

I Matrix Mk , called elementary elimination matrix, adds multiple of
row k to each subsequent row, with multipliers mi chosen so that
result is zero

42

Elementary Elimination Matrices, continued

I Mk is unit lower triangular and nonsingular

I Mk = I −mkeT
k , where mk = [0, . . . , 0,mk+1, . . . ,mn]T and ek is

kth column of identity matrix

I M−1k = I + mkeT
k , which means M−1k = Lk is same as Mk except

signs of multipliers are reversed

I If Mj , j > k, is another elementary elimination matrix, with vector
of multipliers mj , then

MkMj = I −mkeT
k −mjeT

j + mkeT
k mjeT

j

= I −mkeT
k −mjeT

j

which means their product is essentially their “union” and similarly
for product of inverses, LkLj

43

Example: Elementary Elimination Matrices

I For a =

 2
4
−2

,

M1a =

 1 0 0
−2 1 0

1 0 1

 2
4
−2

 =

2
0
0


and

M2a =

1 0 0
0 1 0
0 1/2 1

 2
4
−2

 =

2
4
0



44

Example, continued

I Note that

L1 = M−11 =

 1 0 0
2 1 0
−1 0 1

 , L2 = M−12 =

1 0 0
0 1 0
0 −1/2 1


and

M1M2 =

 1 0 0
−2 1 0

1 1/2 1

 , L1L2 =

 1 0 0
2 1 0
−1 −1/2 1



45

LU Factorization by Gaussian Elimination

46

Gaussian Elimination
I To reduce general linear system Ax = b to upper triangular form,

first choose M1, with a11 as pivot, to annihilate first column of A
below first row

I System becomes M1Ax = M1b, but solution is unchanged

I Next choose M2, using a22 as pivot, to annihilate second column of
M1A below second row

I System becomes M2M1Ax = M2M1b, but solution is still unchanged

I Process continues for each successive column until all subdiagonal
entries have been zeroed

I Resulting upper triangular linear system

Mn−1 · · ·M1Ax = Mn−1 · · ·M1b
MAx = Mb

can be solved by back-substitution to obtain solution to original
linear system Ax = b

I Process just described is called Gaussian elimination

47

LU Factorization

I Product LkLj is unit lower triangular if k < j , so

L = M−1 = M−11 · · ·M
−1
n−1 = L1 · · ·Ln−1

is unit lower triangular

I By design, MA = U is upper triangular

I So we have
A = LU

with L unit lower triangular and U upper triangular

I Thus, Gaussian elimination produces LU factorization of matrix into
triangular factors

48

LU Factorization, continued

I Having obtained LU factorization A = LU , equation Ax = b
becomes

LUx = b

which can be solved by

I solving lower triangular system Ly = b for y by forward-substitution

I then solving upper triangular system Ux = y for x by
back-substitution

I Note that y = Mb is same as transformed right-hand side in
Gaussian elimination

I Gaussian elimination and LU factorization are two ways of expressing
same solution process

49

LU Factorization by Gaussian Elimination

for k = 1 to n − 1
if akk = 0 then stop
for i = k + 1 to n

mik = aik/akk
end
for j = k + 1 to n

for i = k + 1 to n
aij = aij −mikakj

end
end

end

{ loop over columns }
{ stop if pivot is zero }
{ compute multipliers

for current column }

{ apply transformation to
remaining submatrix }

50

Example: Gaussian Elimination

I Use Gaussian elimination to solve linear system

Ax =

 2 4 −2
4 9 −3
−2 −3 7

x1x2
x3

 =

 2
8

10

 = b

I To annihilate subdiagonal entries of first column of A,

M1A =

 1 0 0
−2 1 0

1 0 1

 2 4 −2
4 9 −3
−2 −3 7

 =

2 4 −2
0 1 1
0 1 5

 ,

M1b =

 1 0 0
−2 1 0

1 0 1

 2
8

10

 =

 2
4

12



51

Example, continued
I To annihilate subdiagonal entry of second column of M1A,

M2M1A =

1 0 0
0 1 0
0 −1 1

2 4 −2
0 1 1
0 1 5

 =

2 4 −2
0 1 1
0 0 4

 = U ,

M2M1b =

1 0 0
0 1 0
0 −1 1

 2
4

12

 =

2
4
8

 = Mb

I We have reduced original system to equivalent upper triangular
system

Ux =

2 4 −2
0 1 1
0 0 4

x1x2
x3

 =

2
4
8

 = Mb

which can now be solved by back-substitution to obtain x =

−1
2
2



52

Example, continued

I To write out LU factorization explicitly,

L1L2 =

 1 0 0
2 1 0
−1 0 1

1 0 0
0 1 0
0 1 1

 =

 1 0 0
2 1 0
−1 1 1

 = L

so that

A =

 2 4 −2
4 9 −3
−2 −3 7

 =

 1 0 0
2 1 0
−1 1 1

2 4 −2
0 1 1
0 0 4

 = LU

53

Pivoting

54

Row Interchanges

I Gaussian elimination breaks down if leading diagonal entry of
remaining unreduced matrix is zero at any stage

I Easy fix: if diagonal entry in column k is zero, then interchange row
k with some subsequent row having nonzero entry in column k and
then proceed as usual

I If there is no nonzero on or below diagonal in column k , then there
is nothing to do at this stage, so skip to next column

I Zero on diagonal causes resulting upper triangular matrix U to be
singular, but LU factorization can still be completed

I Subsequent back-substitution will fail, however, as it should for
singular matrix

55

Partial Pivoting

I In principle, any nonzero value will do as pivot, but in practice pivot
should be chosen to minimize error propagation

I To avoid amplifying previous rounding errors when multiplying
remaining portion of matrix by elementary elimination matrix,
multipliers should not exceed 1 in magnitude

I This can be accomplished by choosing entry of largest magnitude on
or below diagonal as pivot at each stage

I Such partial pivoting is essential in practice for numerically stable
implementation of Gaussian elimination for general linear systems

〈 interactive example 〉

56

LU Factorization with Partial Pivoting

I With partial pivoting, each Mk is preceded by permutation Pk to
interchange rows to bring entry of largest magnitude into diagonal
pivot position

I Still obtain MA = U , with U upper triangular, but now

M = Mn−1Pn−1 · · ·M1P1

I L = M−1 is still triangular in general sense, but not necessarily lower
triangular

I Alternatively, we can write

PA = LU

where P = Pn−1 · · ·P1 permutes rows of A into order determined by
partial pivoting, and now L is lower triangular

57

Complete Pivoting

I Complete pivoting is more exhaustive strategy in which largest entry
in entire remaining unreduced submatrix is permuted into diagonal
pivot position

I Requires interchanging columns as well as rows, leading to
factorization

PAQ = LU

with L unit lower triangular, U upper triangular, and P and Q
permutations

I Numerical stability of complete pivoting is theoretically superior, but
pivot search is more expensive than for partial pivoting

I Numerical stability of partial pivoting is more than adequate in
practice, so it is almost always used in solving linear systems by
Gaussian elimination

58

Example: Pivoting

I Need for pivoting has nothing to do with whether matrix is singular
or nearly singular

I For example,

A =

[
0 1
1 0

]
is nonsingular yet has no LU factorization unless rows are
interchanged, whereas

A =

[
1 1
1 1

]
is singular yet has LU factorization

59

Example: Small Pivots
I To illustrate effect of small pivots, consider

A =

[
ε 1
1 1

]
where ε is positive number smaller than εmach

I If rows are not interchanged, then pivot is ε and multiplier is −1/ε,
so

M =

[
1 0
−1/ε 1

]
, L =

[
1 0

1/ε 1

]
,

U =

[
ε 1
0 1− 1/ε

]
=

[
ε 1
0 −1/ε

]
in floating-point arithmetic, but then

LU =

[
1 0

1/ε 1

] [
ε 1
0 −1/ε

]
=

[
ε 1
1 0

]
6= A

60

Example, continued

I Using small pivot, and correspondingly large multiplier, has caused
loss of information in transformed matrix

I If rows interchanged, then pivot is 1 and multiplier is −ε, so

M =

[
1 0
−ε 1

]
, L =

[
1 0
ε 1

]
,

U =

[
1 1
0 1− ε

]
=

[
1 1
0 1

]
in floating-point arithmetic

I Thus,

LU =

[
1 0
ε 1

] [
1 1
0 1

]
=

[
1 1
ε 1

]
which is correct after permutation

61

Pivoting, continued

I Although pivoting is generally required for stability of Gaussian
elimination, pivoting is not required for some important classes of
matrices

I Diagonally dominant

n∑
i=1, i 6=j

|aij | < |ajj |, j = 1, . . . , n

I Symmetric positive definite

A = AT and xTAx > 0 for all x 6= 0

62

Residual

63

Residual

I Residual r = b − Ax̂ for solution x̂ computed using Gaussian
elimination satisfies

‖r‖
‖A‖ ‖x̂‖

≤ ‖E‖
‖A‖

≤ ρ n2 εmach

where E is backward error in matrix A and growth factor ρ is ratio
of largest entry of U to largest entry of A

I Without pivoting, ρ can be arbitrarily large, so Gaussian elimination
without pivoting is unstable

I With partial pivoting, ρ can still be as large as 2n−1, but such
behavior is extremely rare

64

Residual, continued

I There is little or no growth in practice, so

‖r‖
‖A‖ ‖x̂‖

≤ ‖E‖
‖A‖

/ n εmach

which means Gaussian elimination with partial pivoting yields small
relative residual regardless of conditioning of system

I Thus, small relative residual does not necessarily imply computed
solution is close to “true” solution unless system is well-conditioned

I Complete pivoting yields even smaller growth factor, but additional
margin of stability is not usually worth extra cost

65

Example: Small Residual

I Use 4-digit decimal arithmetic to solve[
0.913 0.659
0.457 0.330

] [
x1
x2

]
=

[
0.254
0.127

]
I Gaussian elimination with partial pivoting yields triangular system[

0.9130 0.6590
0 0.0002

] [
x1
x2

]
=

[
0.2540
−0.0001

]
I Back-substitution then gives solution

x̂ =
[
0.6391 −0.5

]T
I Exact residual norm for this solution is 7.04× 10−5, as small as we

can expect using 4-digit arithmetic

66

Example, continued

I But exact solution is

x =
[
1.00 1.00

]T
so error is almost as large as solution

I Cause of this phenomenon is that matrix is nearly singular
(cond(A) > 104)

I Division that determines x2 is between two quantities that are both
on order of rounding error, and hence result is essentially arbitrary

I When arbitrary value for x2 is substituted into first equation, value
for x1 is computed so that first equation is satisfied, yielding small
residual, but poor solution

67

Implementing Gaussian Elimination

68

Implementing Gaussian Elimination

I Gaussian elimination has general form of triple-nested loop

for
for

for
aij = aij − (aik/akk)akj

end
end

end

I Indices i , j , and k of for loops can be taken in any order, for total of
3! = 6 different arrangements

I These variations have different memory access patterns, which may
cause their performance to vary widely on different computers

69

Uniqueness of LU Factorization

I Despite variations in computing it, LU factorization is unique up to
diagonal scaling of factors

I Provided row pivot sequence is same, if we have two LU
factorizations PA = LU = L̂Û , then L̂−1L = ÛU−1 = D is both
lower and upper triangular, hence diagonal

I If both L and L̂ are unit lower triangular, then D must be identity
matrix, so L = L̂ and U = Û

I Uniqueness is made explicit in LDU factorization PA = LDU , with L
unit lower triangular, U unit upper triangular, and D diagonal

70

Storage Management

I Elementary elimination matrices Mk , their inverses Lk , and
permutation matrices Pk used in formal description of LU
factorization process are not formed explicitly in actual
implementation

I U overwrites upper triangle of A, multipliers in L overwrite strict
lower triangle of A, and unit diagonal of L need not be stored

I Row interchanges usually are not done explicitly; auxiliary integer
vector keeps track of row order in original locations

71

Complexity of Solving Linear Systems

I LU factorization requires about n3/3 floating-point multiplications
and similar number of additions

I Forward- and back-substitution for single right-hand-side vector
together require about n2 multiplications and similar number of
additions

I Can also solve linear system by matrix inversion: x = A−1b

I Computing A−1 is tantamount to solving n linear systems, requiring
LU factorization of A followed by n forward- and back-substitutions,
one for each column of identity matrix

I Operation count for inversion is about n3, three times as expensive
as LU factorization

72

Inversion vs. Factorization

I Even with many right-hand sides b, inversion never overcomes higher
initial cost, since each matrix-vector multiplication A−1b requires n2

operations, similar to cost of forward- and back-substitution

I Inversion gives less accurate answer; for example, solving 3x = 18 by
division gives x = 18/3 = 6, but inversion gives
x = 3−1 × 18 = 0.333× 18 = 5.99 using 3-digit arithmetic

I Matrix inverses often occur as convenient notation in formulas, but
explicit inverse is rarely required to implement such formulas

I For example, product A−1B should be computed by LU
factorization of A, followed by forward- and back-substitutions using
each column of B

73

Gauss-Jordan Elimination

I In Gauss-Jordan elimination, matrix is reduced to diagonal rather
than triangular form

I Row combinations are used to annihilate entries above as well as
below diagonal

I Elimination matrix used for given column vector a is of form

1 · · · 0 −m1 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 1 −mk−1 0 · · · 0
0 · · · 0 1 0 · · · 0
0 · · · 0 −mk+1 1 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 −mn 0 · · · 1





a1
...

ak−1

ak
ak+1

...
an


=



0
...
0
ak
0
...
0


where mi = ai/ak , i = 1, . . . , n

74

Gauss-Jordan Elimination, continued

I Gauss-Jordan elimination requires about n3/2 multiplications and
similar number of additions, 50% more expensive than LU
factorization

I During elimination phase, same row operations are also applied to
right-hand-side vector (or vectors) of system of linear equations

I Once matrix is in diagonal form, components of solution are
computed by dividing each entry of transformed right-hand side by
corresponding diagonal entry of matrix

I Latter requires only n divisions, but this is not enough cheaper to
offset more costly elimination phase

〈 interactive example 〉

75

Updating Solutions

76

Solving Modified Problems

I If right-hand side of linear system changes but matrix does not, then
LU factorization need not be repeated to solve new system

I Only forward- and back-substitution need be repeated for new
right-hand side

I This is substantial savings in work, since additional triangular
solutions cost only O(n2) work, in contrast to O(n3) cost of
factorization

77

Sherman-Morrison Formula

I Sometimes refactorization can be avoided even when matrix does
change

I Sherman-Morrison formula gives inverse of matrix resulting from
rank-one change to matrix whose inverse is already known

(A− uvT)−1 = A−1 + A−1u(1− vTA−1u)−1vTA−1

where u and v are n-vectors

I Evaluation of formula requires O(n2) work (for matrix-vector
multiplications) rather than O(n3) work required for inversion

78

Rank-One Updating of Solution

I To solve linear system (A− uvT)x = b with new matrix, use
Sherman-Morrison formula to obtain

x = (A− uvT)−1b
= A−1b + A−1u(1− vTA−1u)−1vTA−1b

which can be implemented by following steps

I Solve Az = u for z , so z = A−1u
I Solve Ay = b for y , so y = A−1b
I Compute x = y + ((vT y)/(1− vT z))z

I If A is already factored, procedure requires only triangular solutions
and inner products, so only O(n2) work and no explicit inverses

79

Example: Rank-One Updating of Solution

I Consider rank-one modification 2 4 −2
4 9 −3
−2 −1 7

x1x2
x3

 =

 2
8

10


(with 3, 2 entry changed) of system whose LU factorization was
computed in earlier example

I One way to choose update vectors is

u =

 0
0
−2

 and v =

0
1
0


so matrix of modified system is A− uvT

80

Example, continued

I Using LU factorization of A to solve Az = u and Ay = b,

z =

−3/2
1/2
−1/2

 and y =

−1
2
2


I Final step computes updated solution

x = y +
vTy

1− vT z
z =

−1
2
2

+
2

1− 1/2

−3/2
1/2
−1/2

 =

−7
4
0


I We have thus computed solution to modified system without

factoring modified matrix

81

Improving Accuracy

82

Scaling Linear Systems

I In principle, solution to linear system is unaffected by diagonal
scaling of matrix and right-hand-side vector

I In practice, scaling affects both conditioning of matrix and selection
of pivots in Gaussian elimination, which in turn affect numerical
accuracy in finite-precision arithmetic

I It is usually best if all entries (or uncertainties in entries) of matrix
have about same size

I Sometimes it may be obvious how to accomplish this by choice of
measurement units for variables, but there is no foolproof method
for doing so in general

I Scaling can introduce rounding errors if not done carefully

83

Example: Scaling

I Linear system [
1 0
0 ε

] [
x1
x2

]
=

[
1
ε

]
has condition number 1/ε, so is ill-conditioned if ε is small

I If second row is multiplied by 1/ε, then system becomes perfectly
well-conditioned

I Apparent ill-conditioning was due purely to poor scaling

I In general, it is usually much less obvious how to correct poor scaling

84

Iterative Refinement

I Given approximate solution x0 to linear system Ax = b, compute
residual

r0 = b − Ax0
I Now solve linear system Az0 = r0 and take

x1 = x0 + z0

as new and “better” approximate solution, since

Ax1 = A(x0 + z0) = Ax0 + Az0
= (b − r0) + r0 = b

I Process can be repeated to refine solution successively until
convergence, potentially producing solution accurate to full machine
precision

85

Iterative Refinement, continued

I Iterative refinement requires double storage, since both original
matrix and its LU factorization are required

I Due to cancellation, residual usually must be computed with higher
precision for iterative refinement to produce meaningful
improvement

I For these reasons, iterative improvement is often impractical to use
routinely, but it can still be useful in some circumstances

I For example, iterative refinement can sometimes stabilize otherwise
unstable algorithm

86

Special Types of Linear Systems

87

Special Types of Linear Systems

I Work and storage can often be saved in solving linear system if
matrix has special properties

I Examples include

I Symmetric : A = AT , aij = aji for all i , j

I Positive definite : xTAx > 0 for all x 6= 0

I Band : aij = 0 for all |i − j | > β, where β is bandwidth of A

I Sparse : most entries of A are zero

88

Symmetric Positive Definite Matrices

I If A is symmetric and positive definite, then LU factorization can be
arranged so that U = LT , which gives Cholesky factorization

A = LLT

where L is lower triangular with positive diagonal entries

I Algorithm for computing it can be derived by equating
corresponding entries of A and LLT

I In 2× 2 case, for example,[
a11 a21
a21 a22

]
=

[
l11 0
l21 l22

] [
l11 l21
0 l22

]
implies

l11 =
√
a11, l21 = a21/l11, l22 =

√
a22 − l221

89

Cholesky Factorization

I One way to write resulting algorithm, in which Cholesky factor L
overwrites lower triangle of original matrix A, is

for k = 1 to n
akk =

√
akk

for i = k + 1 to n
aik = aik/akk

end
for j = k + 1 to n

for i = j to n
aij = aij − aik · ajk

end
end

end

{ loop over columns }

{ scale current column }

{ from each remaining column,
subtract multiple
of current column }

90

Cholesky Factorization, continued

I Features of Cholesky algorithm for symmetric positive definite
matrices

I All n square roots are of positive numbers, so algorithm is well
defined

I No pivoting is required to maintain numerical stability

I Only lower triangle of A is accessed, and hence upper triangular
portion need not be stored

I Only n3/6 multiplications and similar number of additions are
required

I Thus, Cholesky factorization requires only about half work and half
storage compared with LU factorization of general matrix by
Gaussian elimination, and also avoids need for pivoting

〈 interactive example 〉

91

Symmetric Indefinite Systems

I For symmetric indefinite A, Cholesky factorization is not applicable,
and some form of pivoting is generally required for numerical
stability

I Factorization of form
PAPT = LDLT

with L unit lower triangular and D either tridiagonal or block
diagonal with 1× 1 and 2× 2 diagonal blocks, can be computed
stably using symmetric pivoting strategy

I In either case, cost is comparable to that of Cholesky factorization

92

Band Matrices

I Gaussian elimination for band matrices differs little from general
case — only ranges of loops change

I Typically matrix is stored in array by diagonals to avoid storing zero
entries

I If pivoting is required for numerical stability, bandwidth can grow
(but no more than double)

I General purpose solver for arbitrary bandwidth is similar to code for
Gaussian elimination for general matrices

I For fixed small bandwidth, band solver can be extremely simple,
especially if pivoting is not required for stability

93

Tridiagonal Matrices

I Consider tridiagonal matrix

A =



b1 c1 0 · · · 0

a2 b2 c2
. . .

...

0
. . .

. . .
. . . 0

...
. . . an−1 bn−1 cn−1

0 · · · 0 an bn



I Gaussian elimination without pivoting reduces to

d1 = b1
for i = 2 to n

mi = ai/di−1
di = bi −mici−1

end

94

Tridiagonal Matrices, continued

I LU factorization of A is then given by

L =



1 0 · · · · · · 0

m2 1
. . .

...

0
. . .

. . .
. . .

...
...

. . . mn−1 1 0
0 · · · 0 mn 1


, U =



d1 c1 0 · · · 0

0 d2 c2
. . .

...
...

. . .
. . .

. . . 0
...

. . . dn−1 cn−1

0 · · · · · · 0 dn



95

General Band Matrices

I In general, band system of bandwidth β requires O(βn) storage, and
its factorization requires O(β2n) work

I Compared with full system, savings is substantial if β � n

96

Iterative Methods for Linear Systems

I Gaussian elimination is direct method for solving linear system,
producing exact solution in finite number of steps (in exact
arithmetic)

I Iterative methods begin with initial guess for solution and
successively improve it until desired accuracy attained

I In theory, it might take infinite number of iterations to converge to
exact solution, but in practice iterations are terminated when
residual is as small as desired

I For some types of problems, iterative methods have significant
advantages over direct methods

I We will study specific iterative methods later when we consider
solution of partial differential equations

97

Software for Linear Systems

98

LINPACK and LAPACK

I LINPACK is software package for solving wide variety of systems of
linear equations, both general dense systems and special systems,
such as symmetric or banded

I Solving linear systems is of such fundamental importance in
scientific computing that LINPACK has become standard benchmark
for comparing performance of computers

I LAPACK is more recent replacement for LINPACK featuring higher
performance on modern computer architectures, including many
parallel computers

I Both LINPACK and LAPACK are available from Netlib.org

I Linear system solvers underlying MATLAB and Python’s NumPy and
SciPy libraries are based on LAPACK

99

BLAS – Basic Linear Algebra Subprograms

I High-level routines in LINPACK and LAPACK are based on lower-level
Basic Linear Algebra Subprograms (BLAS)

I BLAS encapsulate basic operations on vectors and matrices so they
can be optimized for given computer architecture while high-level
routines that call them remain portable

I Higher-level BLAS encapsulate matrix-vector and matrix-matrix
operations for better utilization of memory hierarchies such as cache
and virtual memory with paging

I Generic versions of BLAS are available from Netlib.org, and many
computer vendors provide custom versions optimized for their
particular systems

100

Examples of BLAS

Level Data Work Examples Function

1 O(n) O(n) saxpy Scalar × vector + vector
sdot Inner product
snrm2 Euclidean vector norm

2 O(n2) O(n2) sgemv Matrix-vector product
strsv Triangular solution
sger Rank-one update

3 O(n2) O(n3) sgemm Matrix-matrix product
strsm Multiple triang. solutions
ssyrk Rank-k update

Level-3 BLAS have more opportunity for data reuse, and hence higher
performance, because they perform more operations per data item than
lower-level BLAS

101

Summary - Solving Linear Systems

I Solving linear systems is fundamental in scientific computing

I Sensitivity of solution to linear system is measured by cond(A)

I Triangular linear system is easily solved by successive substitution

I General linear system can be solved by transforming it to triangular
form by Gaussian elimination (LU factorization)

I Pivoting is essential for stable implementation of Gaussian
elimination

I Specialized algorithms and software are available for solving
particular types of linear systems

	Systems of Linear Equations
	Norms and Condition Number
	Assessing Accuracy
	Solving Linear Systems
	Elementary Elimination Matrices
	LU Factorization by Gaussian Elimination
	Pivoting
	Residual
	Implementing Gaussian Elimination
	Updating Solutions
	Improving Accuracy
	Special Types of Linear Systems
	Software for Linear Systems

